Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835502

RESUMEN

Distinct photosynthetic physiologies are found within the Moricandia genus, both C3-type and C2-type representatives being known. As C2-physiology is an adaptation to drier environments, a study of physiology, biochemistry and transcriptomics was conducted to investigate whether plants with C2-physiology are more tolerant of low water availability and recover better from drought. Our data on Moricandia moricandioides (Mmo, C3), M. arvensis (Mav, C2) and M. suffruticosa (Msu, C2) show that C3 and C2-type Moricandias are metabolically distinct under all conditions tested (well-watered, severe drought, early drought recovery). Photosynthetic activity was found to be largely dependent upon the stomatal opening. The C2-type M. arvensis was able to secure 25-50% of photosynthesis under severe drought as compared to the C3-type M. moricandioides. Nevertheless, the C2-physiology does not seem to play a central role in M. arvensis drought responses and drought recovery. Instead, our biochemical data indicated metabolic differences in carbon and redox-related metabolism under the examined conditions. The cell wall dynamics and glucosinolate metabolism regulations were found to be major discriminators between M. arvensis and M. moricandioides at the transcription level.


Asunto(s)
Brassicaceae , Sequías , Resistencia a la Sequía , Brassicaceae/metabolismo , Fotosíntesis/fisiología , Plantas/metabolismo , Agua/metabolismo , Hojas de la Planta/metabolismo
2.
Plants (Basel) ; 11(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36501228

RESUMEN

Plant genetic resources conservation may be a potential option for the improvement of agricultural crops through modern biotechnologies, and in vitro conservation is a tool available to safeguard plant biodiversity. Ex situ conservation of plant genetic resources using the in vitro procedures is in progress in many countries. The slow growth storage (SGS) technique is a valid in vitro approach to preserve several vegetatively propagated species by controlling the growth and development of plantlets, economizing storage space and labor and reducing costs. Moreover, SGS prolongs the timing between subcultures, lowers the risk of losing germplasm through handling errors, such as contamination problems, and decreases the risk of genetic instability due to the reduction in the number of subcultures. SGS is applied by considering different factors: temperature, light or darkness conditions, medium composition, including mineral or sucrose concentrations, and the presence/absence of plant growth regulators, osmotic agents and growth inhibitors. SGS protocols for some fruit species have been well defined, others require additional research. The present review focuses on the effect of several factors that influence the SGS of in vitro shoots derived from temperate and tropical fruit species during the last ten years.

3.
J Biotechnol ; 331: 53-62, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33727083

RESUMEN

Agricultural sustainability is an increasing need considering the challenges posed by climate change and rapid human population growth. The use of plant growth-promoting rhizobacteria (PGPR) may represent an excellent, new agriculture practice to improve soil quality while promoting growth and yield of important crop species subjected to water stress conditions. In this study, two PGPR strains with 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase activity were co-inoculated in velvet bean plants to verify the physiological, biochemical and molecular responses to progressive water stress. The results of our study show that the total biomass and the water use efficiency of inoculated plants were higher than uninoculated plants at the end of the water stress period. These positive effects may be derived from a lower root ACC content (-45 %) in water-stressed inoculated plants than in uninoculated ones resulting in lower root ethylene emission. Furthermore, the ability of inoculated plants to maintain higher levels of both isoprene emission, a priming compound that may help to protect leaves from oxidative damage, and carbon assimilation during water stress progression may indicate the underlining metabolic processes conferring water stress tolerance. Overall, the experimental results show that co-inoculation with ACC deaminase PGPR positively affects tolerance to water deficit, confirming the potential for biotechnological applications in water-stressed agricultural areas.


Asunto(s)
Mucuna , Butadienos , Liasas de Carbono-Carbono , Etilenos , Hemiterpenos , Humanos , Fotosíntesis , Raíces de Plantas , Microbiología del Suelo , Agua
4.
Plant Cell Rep ; 39(7): 971-982, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32314047

RESUMEN

KEY MESSAGE: Poplar callus maintained a specific difference in osmotic potential with respect to media when supplemented with different carbohydrate concentrations. This balance in osmotic potential guaranteed the growth capacity. Osmotic stress is caused by several abiotic factors such as drought, salinity, or freezing. However, the threshold of osmotic potential that allows the growth under stress conditions has not been thoroughly studied. In this study, different levels of osmotic stress in Populus alba (L.) callus have been induced with the addition of mannitol or sorbitol in the medium (from 0 to 500 mM). The key factor for preserving the growth was observed to be the restoration of a constant difference in osmotic potential between callus and medium for all the tested conditions. The osmotic adjustments were primarily achieved with the uptake of mannitol or sorbitol from the media considering their chemical properties instead of their biological functions. The decrease in water content (from - 1 to - 10% after 21 days) and mineral elements, such as potassium, calcium, and magnesium, together with the alterations in cell morphology, did not show negative effects on growth. The activity of sorbitol dehydrogenase was detected for the first time in poplar (+ 4.7 U l-1 in callus treated with sorbitol compared to control callus). This finding suggested the importance of choosing carefully the molecules used to exert osmotic stress for separating the dual function of carbohydrates in osmotic adjustments and cell metabolism.


Asunto(s)
Carbohidratos/farmacología , Presión Osmótica , Populus/citología , Proliferación Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Células Cultivadas , Medios de Cultivo , Congelación , L-Iditol 2-Deshidrogenasa/metabolismo , Manitol/metabolismo , Minerales/metabolismo , Populus/ultraestructura , Análisis de Componente Principal , Análisis de Regresión , Solubilidad , Sorbitol/metabolismo , Almidón/metabolismo , Azúcares/metabolismo , Agua/metabolismo
5.
Sci Total Environ ; 692: 713-722, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31539979

RESUMEN

Nocturnal transpiration may be a key factor influencing water use in plants. Tropospheric ozone (O3) and availability of nutrients such as nitrogen (N) and phosphorus (P) in the soil can affect daytime water use through stomata, but the combined effects of O3, N and P on night-time stomatal conductance (gs) are not known. We investigated the effects of O3 and soil availability of N and P on nocturnal gs and the dynamics of stomatal response after leaf severing in an O3-sensitive poplar clone (Oxford) subjected to combined treatments over a growing season in an O3 free air controlled exposure (FACE) facility. The treatments were two soil N levels (0 and 80 kg N ha-1; N0 and N80), three soil P levels (0, 40 and 80 kg P ha-1; P0, P40 and P80) and three O3 levels (ambient concentration, AA [35.0 ppb as hourly mean]; 1.5 × AA; 2.0 × AA). The analysis of stomatal dynamics after leaf severing suggested that O3 impaired stomatal closure execution. As a result, nocturnal gs was increased by 2.0 × AA O3 in August (+39%) and September (+108%). Night-time gs was correlated with POD0 (phytotoxic O3 dose) and increased exponentially after 40 mmol m-2 POD0. Such increase of nocturnal gs was attributed to the emission of ethylene due to 2.0 × AA O3 exposure, while foliar abscisic acid (ABA) or indole-3-acetic acid (IAA) did not affect gs at night. Interestingly, the O3-induced stomatal opening at night was limited by N treatments in August, but not limited in September. Phosphorus decreased nocturnal gs, although P did not modify the O3-induced stomatal dysfunction. The results suggest that the increased nocturnal gs may be associated with a need to improve N acquisition to cope with O3 stress.


Asunto(s)
Nitrógeno/fisiología , Ozono/efectos adversos , Fósforo/fisiología , Estomas de Plantas/efectos de los fármacos , Populus/efectos de los fármacos , Ritmo Circadiano , Fertilizantes/análisis , Italia , Estomas de Plantas/fisiología , Populus/fisiología
6.
Plants (Basel) ; 7(4)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241389

RESUMEN

Heat waves are predicted to increase in frequency and duration in many regions as global temperatures rise. These transient increases in temperature above normal average values will have pronounced impacts upon the photosynthetic and stomatal physiology of plants. During the summer of 2017, much of the Mediterranean experienced a severe heat wave. Here, we report photosynthetic leaf gas exchange and chlorophyll fluorescence parameters of olive (Olea europaea cv. Leccino) grown under water deficit and full irrigation over the course of the heat wave as midday temperatures rose over 40 °C in Central Italy. Heat stress induced a decline in the photosynthetic capacity of the olives consistent with reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Damage to photosystem II was more apparent in plants subject to water deficit. In contrast to previous studies, higher temperatures induced reductions in stomatal conductance. Heat stress adversely affected the carbon efficiency of olive. The selection of olive varieties with enhanced tolerance to heat stress and/or strategies to mitigate the impact of higher temperatures will become increasingly important in developing sustainable agriculture in the Mediterranean as global temperatures rise.

7.
3 Biotech ; 8(7): 317, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30023149

RESUMEN

Olea europaea L. cv Canino shoots were micropropagated to test two different culture systems: (1) on conventional semi-solid medium in glass jars and (2) in liquid culture in a Plantform™ bioreactor. The temporary immersion system, Plantform™, is a new propagation approach that uses liquid culture, where shoots undergo periodic immersion in liquid medium alternated with dry periods, avoiding gas accumulation through forced ventilation. This study proposes a protocol to improve in vitro propagation of olive reducing production costs. Our findings revealed that olive shoots propagated in Plantform™, with an immersion frequency of 8 min every 16 h and additional ventilation, showed good adaptability and better growth rates than those cultured in conventional system. Overall, the Plantform™ improves in vitro culture of 'Canino', showing higher proliferation, shoot length and better vigour of shoots. Moreover, the study found no significant differences in shoot length when 5 or 10 µM zeatin was applied in Plantform™ (3.04 and 3.13 cm, respectively); it is, therefore, possible to achieve efficient olive proliferation also with half hormone concentration. The positive performance of the bioreactor approach was also confirmed by Relative Growth Rate index. This is the first documented study of the Plantform™ technique for olive propagation.

8.
PLoS One ; 13(2): e0191218, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29447189

RESUMEN

Drought is one of the major constraints limiting agricultural production worldwide and is expected to increase in the future. Limited water availability causes significant effects to plant growth and physiology. Plants have evolved different traits to mitigate the stress imposed by drought. The presence of plant growth-promoting rhizobacteria (PGPR) could play an important role in improving plant performances and productivity under drought. These beneficial microorganisms colonize the rhizosphere of plants and increase drought tolerance by lowering ethylene formation. In the present study, we demonstrate the potential to improve the growth of velvet bean under water deficit conditions of two different strains of PGPR with ACCd (1-Aminocyclopropane-1-Carboxylate deaminase) activity isolated from rainfed farming system. We compared uninoculated and inoculated plants with PGPR to assess: a) photosynthetic performance and biomass; b) ACC content and ethylene emission from leaves and roots; c) leaf isoprene emission. Our results provided evidence that under drought conditions inoculation with PGPR containing the ACCd enzyme could improve plant growth compared to untreated plants. Ethylene emission from roots and leaves of inoculated velvet bean plants was significantly lower than uninoculated plants. Moreover, isoprene emission increased with drought stress progression and was higher in inoculated plants compared to uninoculated counterparts. These findings clearly illustrate that selected PGPR strains isolated from rainfed areas could be highly effective in promoting plant growth under drought conditions by decreasing ACC and ethylene levels in plants.


Asunto(s)
Mucuna/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Rhizobiaceae/metabolismo , Biomasa , Liasas de Carbono-Carbono/metabolismo , Sequías , Etilenos/biosíntesis , Mucuna/fisiología , Fotosíntesis , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Rhizobiaceae/genética , Rizosfera , Microbiología del Suelo , Agua/fisiología
9.
Front Genet ; 8: 6, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28194158

RESUMEN

Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior.

10.
Biotechnol Adv ; 31(2): 175-85, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23022736

RESUMEN

This paper presents the advances made over the last decade in cryopreservation of economically important vegetatively propagated fruit trees. Cryopreservation protocols have been established using both dormant buds sampled on field-grown plants and shoot tips sampled on in vitro plantlets. In the case of dormant buds, scions are partially dehydrated by storage at -5 °C, and then cooled slowly to -30 °C using low cooling rates (c.a. 1 °C/h) before immersion in liquid nitrogen. After slow rewarming and rehydration of samples, regrowth takes place either through grafting of buds on rootstocks or excision of apices and inoculation in vitro. In the case of shoot tips of in vitro plantlets, the cryopreservation techniques employed are the following: controlled rate cooling procedures involving slow prefreezing followed by immersion in liquid nitrogen or vitrification-based procedures including encapsulation-dehydration, vitrification, encapsulation-vitrification and droplet-vitrification. The current status of cryopreservation for a series of fruit tree species including Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis is presented. Routine application of cryopreservation for long-term germplasm storage in genebanks is currently limited to apple and pear, for which large cryopreserved collections have been established at NCGRP, Fort Collins (USA), using dormant buds and in vitro shoot tips, respectively. However, there are a growing number of examples of pilot scale testing experiments under way for different species in various countries. Progress in the further development and application of cryopreservation techniques will be made through a better understanding of the mechanisms involved in the induction of tolerance to dehydration and cryopreservation in frozen explants.


Asunto(s)
Productos Agrícolas , Criopreservación/métodos , Brotes de la Planta , Actinidia , Diospyros , Frutas , Malus , Olea , Prunus , Pyrus , Vitis , Vitrificación
11.
Methods Mol Biol ; 710: 185-200, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21207270

RESUMEN

With its beautiful trees, Citrus species have long been valued by humanity. The tasteful fruits, extensively used for nutrition, are also good for health due to the high content in vitamins, minerals, and dietary fibers. Like majority of the woody fruit plants, Citrus germplasm is conserved mainly as field collections in clonal orchards. However, such a traditional approach presents several difficulties, among which are the high cost, manual labor, and extensive land required to maintain the collections, as well as the necessity of a careful protection of plants from diseases and extreme environmental conditions. As many species in the genus have seeds recalcitrant to desiccation, conservation in seed banks is also inadequate. On the other hand, cryopreservation, i.e., the storage of specimens at ultra-low temperatures (usually in liquid nitrogen, at -196°C) where reactions within the cells are minimized, presents a unique alternative for the safe storage of such germplasm. The present contribution outlines the cryopreservation techniques applied to seeds, zygotic and somatic embryos, embryogenic callus cultures of Citrus spp. and provides sample protocols to be used for Citrus conservation.


Asunto(s)
Citrus/embriología , Criopreservación/métodos , Semillas , Técnicas de Cultivo , Desecación/métodos , Vitrificación
12.
Cryo Letters ; 26(3): 185-92, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16082444

RESUMEN

An effective procedure for the cryopreservation of horse chestnut (Aesculus hippocastanum L.) embryogenic callus by vitrification/one-step freezing is described here. In particular, the study focused on the possibility of recovering the full proliferation potential of the embryogenic lines after storage in liquid nitrogen. The developmental stage of the embryogenic lines was shown to play an important role. Ninety-min incubation in PVS2 and preservation at -196 degrees C of callus samples, containing a prevalence of embryogenic masses at an advanced stage of somatic embryo maturation (i.e., the torpedo stage), gave optimum regrowth of healthy and proliferating embryogenic callus. Moreover, raising the thawing temperature to 45 degrees C yielded the maximum survival (94%) of torpedo-stage embryogenic samples, recovery of proliferation and, in more than 70% of cases, maturation to the cotyledonary stage. This study opens the way to the possibility of safe, long-term storage in liquid nitrogen of valuable embryogenic lines of horse chestnut, avoiding repeated subculturing.


Asunto(s)
Aesculus , Criopreservación/métodos , Técnicas de Cultivo , Germinación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA