Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 742: 140543, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32721725

RESUMEN

Rivers suffer from more severe decreases in species diversity compared to other aquatic and terrestrial ecosystems due to a variety of pressures related to human activities. Species provide different roles in the functioning of the ecosystem, and their loss may reduce the capacity of the ecosystems to respond to multiple stressors. The effects on diversity will differ based on the type, combination and severity of stressors, as well as on the characteristics of the community composition and tolerance. Multiple trait-based approaches (MTBAs) can help to unravel the effects of multiple stressors on communities, providing a mechanistic interpretation, and, thus, complementing traditional biodiversity assessments using community structure. We studied the relationships between diversity indexes and trait composition of macroinvertebrate and diatom communities, as well as environmental variables that described the hydrological and geomorphological alterations and toxic pollution (pesticides and pharmaceuticals) of three different European river basins: the Adige, the Sava, and the Evrotas. These river basins can be considered representative cases of different situations in European freshwater systems. Hydrological variables were the main drivers determining the community structure and function in the rivers, for both diatoms and macroinvertebrates. For diatom communities, pharmaceutical active compound (PhAC) toxic units were also identified as a very important driver of diversity changes, explaining up to 57% of the variance in taxonomic richness. For macroinvertebrates, river geomorphology was an important driver of structural changes, particularly affecting Plecoptera richness. In addition, PhAC and pesticide toxic units were also identified as stressors for macroinvertebrate communities. MTBA provided a detailed picture of the effects of the stressors on the communities and confirmed the importance of hydrological variables in shaping the functional attributes of the communities.


Asunto(s)
Diatomeas , Ríos , Animales , Biodiversidad , Ecosistema , Monitoreo del Ambiente , Invertebrados
2.
Environ Pollut ; 254(Pt B): 113057, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31454578

RESUMEN

Olive mill wastewaters (OMW) discharging in river ecosystems cause significant adverse effects on their water chemistry and biological communities. We here examined the effects of OMW loads in four streams of a Mediterranean basin characterized by changing flow. The diatom and macroinvertebrate community structures were compared between upstream (control) and downstream (impacted) sites receiving OMW discharge. We also tested if effects occurred at the organism level, i.e. the occurrence of deformities in diatom valves, and the sediment toxicity on the midge Chironomus riparius. We evaluated these effects through a two-year analysis, at various levels of chemical pollution and dilution capacity. The impacted sites had high phenol concentrations and organic carbon loads during and after olive mill (OM) operation, and were characterized by higher abundances of pollution-tolerant diatom and macroinvertebrate taxa. Diatom valve deformities occurred more frequently at the impacted sites. The development of C. riparius was affected by phenolic compounds and organic carbon concentrations in the sediments. The similarity in the diatom and macroinvertebrate assemblages between control and impacted sites decreased at lower flows. Diatoms were more sensitive in detecting deterioration in the biological status of OMW receiving waterways than macroinvertebrates. Our results indicate that the negative effects of OMW extended to the whole benthic community, at both assemblage and organism level.


Asunto(s)
Monitoreo del Ambiente , Olea , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad , Biota , Diatomeas , Ecosistema , Fenol/análisis , Ríos/química , Eliminación de Residuos Líquidos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
3.
Environ Res ; 156: 485-493, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28415043

RESUMEN

We used the trait composition of macroinvertebrate communities to identify the effects of pesticides and multiple stressors associated with urban land use at different sites of four rivers in Spain. Several physical and chemical stressors (high metal pollution, nutrients, elevated temperature and flow alterations) affected the urban sites. The occurrence of multiple stressors influenced aquatic assemblages at 50% of the sites. We hypothesized that the trait composition of macroinvertebrate assemblages would reflect the strategies that the assemblages used to cope with the respective environmental stressors. We used RLQ and fourth corner analysis to address the relationship between stressors and the trait composition of benthic macroinvertebrates. We found a statistically significant relationship between the trait composition and the exposure of assemblages to environmental stressors. The first RLQ dimension, which explained most of the variability, clearly separated sites according to the stressors. Urban-related stressors selected taxa that were mainly plurivoltine and fed on deposits. In contrast, pesticide impacted sites selected taxa with high levels of egg protection (better egg survival), indicating a potentially higher risk for egg mortality. Moreover, the trait diversity of assemblages at urban sites was low compared to that observed in pesticide impacted sites, suggesting the homogenization of assemblages in urban areas.


Asunto(s)
Biodiversidad , Monitoreo del Ambiente , Invertebrados/fisiología , Ríos/química , Contaminantes Químicos del Agua/toxicidad , Animales , Invertebrados/efectos de los fármacos , España
4.
Sci Total Environ ; 540: 297-306, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26118861

RESUMEN

The determination of the real toxicity of sediments in aquatic ecosystems is challenging and necessary for an appropriate risk assessment. Different approaches have been developed and applied over the last several decades. Currently, the joint implementation of chemical, ecological and toxicological tools is recommended for an appropriate and successful toxicity risk assessment. We chose the combination of the toxic unit approach with acute pore water tests (Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna) and whole-sediment exposure tests (V. fischeri, Chironomus riparius), together with invertebrate community composition (multivariate analyses) to detect short and long-term responses of the organisms in four rivers of the Iberian Peninsula. High toxicity was detected in three sites (the downstream sites of the Llobregat and the Júcar, and the most upstream site of the Ebro). We identified organophosphate insecticides and metals as the main variables responsible for this toxicity, particularly in the whole-sediment tests. In particular, chlorpyrifos was mostly responsible for the toxicity (TUs) of D. magna, coinciding with the C. riparius mortality (long-term toxicity) in the mentioned sites, and copper was the main pollutant responsible for the short-term toxicity of P. subcapitata. The combination of the different approaches allowed us to detect ecotoxicological effects in organisms and identify the main contributors to the toxicity in these multi-stressed rivers.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/toxicidad , Aliivibrio fischeri , Animales , Bioensayo , Chlorophyta , Ecosistema , Ecotoxicología , Ríos/química , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 540: 324-33, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26170110

RESUMEN

Ecotoxicological risk assessment of chemical pollution in four Iberian river basins (Llobregat, Ebro, Júcar and Guadalquivir) was performed. The data set included more than 200 emerging and priority compounds measured at 77 sampling sites along four river basins studied. The toxic units (TU) approach was used to assess the risk of individual compounds and the concentration addition model (CA) to assess the site specific risk. Link between chemical pollution and aquatic macroinvertebrate communities in situ was examined by using four biological indexes; SPEAR ("Species at Risk Index") as the indicator of decline of sensitive species in relation to general organic (SPEARorganic) and pesticides (SPEARpesticides) pollution; and Shannon and Margalef biodiversity indexes. The results of the study suggested that organic chemicals posed the risk of acute effects at 42% of the sampling sites and the risk of chronic effects at all the sites. Metals posed the acute risk at 44% of the sites. The main drivers of the risk were mainly pesticides and metals. However, several emerging contaminants (e.g. the antidepressant drug sertraline and the disinfectant triclosan) were contributing to the chronic effects risk. When risk associated with metals and organic chemicals was compared, the latter dominated in 2010, mainly due to the presence of highly toxic pesticides, while metals did in 2011. Compounds that are not regulated on the European level were posing the risk of chronic effects at 23% of the sites. The decline of sensitive macroinvertebrate taxa expressed in terms of SPEAR index was correlated with the increase of toxic stress related to organic compounds Biodiversity indexes were negatively correlated with the metals and the urban land use type in the catchment.


Asunto(s)
Monitoreo del Ambiente/métodos , Invertebrados/clasificación , Contaminantes Químicos del Agua/análisis , Animales , Biodiversidad , Ecotoxicología , Invertebrados/crecimiento & desarrollo , Metales , Plaguicidas/análisis , Medición de Riesgo , Ríos/química , España , Contaminantes Químicos del Agua/toxicidad
6.
Sci Total Environ ; 503-504: 200-12, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25005238

RESUMEN

Daphnia magna individuals were transplanted across 12 sites from three Spanish river basins (Llobregat, Ebro, Jucar) showing different sources of pollution. Gene transcription, feeding and biochemical responses in the field were assessed and compared with those obtained in re-constituted water treatments spiked with organic eluates obtained from water samples collected at the same locations and sampling periods. Up to 166 trace contaminants were detected in water and classified by their mode of action into 45 groups that included metals, pharmaceuticals, pesticides, illicit drugs, and other industrial compounds. Physicochemical water parameters differentiated the three river basins with Llobregat having the highest levels of conductivity, metals and pharmaceuticals, followed by Ebro, whereas the Jucar river had the greatest levels of illicit drugs. D. magna grazing rates and cholinesterase activity responded similarly than the diversity of riparian benthic communities. Transcription patterns of 13 different genes encoding for general stress, metabolism and energy processes, molting and xenobiotic transporters corroborate phenotypic responses differentiated sites within and across river basins. Principal Component Analysis and Partial Least Square Projections to Latent Structures regression analyses indicated that measured in situ responses of most genes and biomarkers and that of benthic macroinvertebrate diversity indexes were affected by distinct environmental factors. Conductivity, suspended solids and fungicides were negatively related with the diversity of macroinvertebrates cholinesterase, and feeding responses. Gene transcripts of heat shock protein and metallothionein were positively related with 11 classes of organic contaminants and 6 metals. Gene transcripts related with signaling paths of molting and reproduction, sugar, protein and xenobiotic metabolism responded similarly in field and lab exposures and were related with high residue concentrations of analgesics, diuretics, psychiatric drugs, ß blockers, illicit drugs, trizoles, bisphenol A, caffeine and pesticides. These results indicate that application of omic technologies in the field is a promising subject in water management.


Asunto(s)
Monitoreo del Ambiente/métodos , Animales , Biomarcadores/metabolismo , Daphnia , Plaguicidas/toxicidad , España , Contaminantes Químicos del Agua/toxicidad
7.
Sci Total Environ ; 440: 194-203, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22858355

RESUMEN

Data from four Spanish basin management authorities were analysed. Chemical and biological data from four Spanish basin management authorities were analysed, focusing on three consecutive years. Aims were to i) determine the chemicals most likely responsible for the environmental toxicological risk in the four Spanish basins and ii) investigate the relationships between toxicological risk and biological status in these catchments. The toxicological risk of chemicals was evaluated using the toxic unit (TU) concept. With these data we considered if the potential risk properly reflects the risk to the community or, alternatively, if new criteria should be developed to improve risk assessment. Data study revealed inadequacies in processing and monitoring that should be improved (e.g., site coincidence for chemical and biological sampling). Analysis of the chemical data revealed high potential toxicological risk in the majority of sampling points, to which metals were the main contributors to this risk. However, clear relationships between biological quality and chemical risk were found only in one river. Further investigation of metal toxicity may be necessary, and future analyses are necessary to accurately estimate the risk to the environment.


Asunto(s)
Ecotoxicología/métodos , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Invertebrados/efectos de los fármacos , Ríos/química , Contaminantes Químicos del Agua/toxicidad , Animales , Metales/análisis , Metales/toxicidad , Modelos Teóricos , Medición de Riesgo , Estaciones del Año , España , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...