Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(19)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33962942

RESUMEN

The endoplasmic reticulum (ER) is a central eukaryotic organelle with a tubular network made of hairpin proteins linked by hydrolysis of guanosine triphosphate nucleotides. Among posttranslational modifications initiated at the ER level, glycosylation is the most common reaction. However, our understanding of the impact of glycosylation on the ER structure remains unclear. Here, we show that exostosin-1 (EXT1) glycosyltransferase, an enzyme involved in N-glycosylation, is a key regulator of ER morphology and dynamics. We have integrated multiomics and superresolution imaging to characterize the broad effect of EXT1 inactivation, including the ER shape-dynamics-function relationships in mammalian cells. We have observed that inactivating EXT1 induces cell enlargement and enhances metabolic switches such as protein secretion. In particular, suppressing EXT1 in mouse thymocytes causes developmental dysfunctions associated with the ER network extension. Last, our data illuminate the physical and functional aspects of the ER proteome-glycome-lipidome structure axis, with implications in biotechnology and medicine.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Animales , Retículo Endoplásmico/metabolismo , Glicosilación , Mamíferos , Ratones , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
2.
Pest Manag Sci ; 76(10): 3477-3486, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32077574

RESUMEN

BACKGROUND: A key challenge for developing computer models of spray retention by plants is to accurately predict how spray drops behave when impacting leaf surfaces. One poorly understood outcome occurs when drops bounce or shatter on impact but leave behind a proportion of the liquid on the surface (designated as pinning). This process is studied via impaction experiments with two hard-to-wet leaf surfaces (fat-hen: Chenopodium album and barnyard grass: Echinochloa crus-galli L. P. Beauv) and one hydrophobic artificial surface (Teflon) using three liquid formulations. RESULTS: Drops that impact upon Teflon underwent pinning shatter events via a well-known mechanism referred to as receding breakup. Drops impacting on leaf surfaces did not undergo receding breakup because the liquid rim was not in direct contact with the leaf surface when it broke into secondary droplets. However, pinning did occur on plant surfaces via a different mechanism, especially when using formulations containing a surfactant. CONCLUSION: Newly developed image analysis and methodology has allowed quantification of the volume fraction pinned to surfaces when drops shatter. The addition of surfactant can increase both the probability of pinning and the pinned volume when drops shatter on fat-hen or Teflon. However, the surfactants studied did not substantially improve the probability of pinning on barnyard grass. The difference in behaviour between the two leaf surfaces and the underlying mechanism is worth further study. © 2020 Society of Chemical Industry.


Asunto(s)
Hojas de la Planta , Animales , Pollos , Echinochloa , Femenino , Interacciones Hidrofóbicas e Hidrofílicas , Tensoactivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA