Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pediatr Crit Care Med ; 23(7): e309-e318, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35426861

RESUMEN

OBJECTIVES: In critically ill children, severely altered pharmacokinetics may result in subtherapeutic ß-lactam antibiotic concentrations when standard pediatric dosing regimens are applied. However, it remains unclear how to recognize patients most at risk for suboptimal exposure and their outcome. This study aimed to: 1) describe target attainment for ß-lactam antibiotics in critically ill children, 2) identify risk factors for suboptimal exposure, and 3) study the association between target nonattainment and clinical outcome. DESIGN: Post hoc analysis of the "Antibiotic Dosing in Pediatric Intensive Care" study (NCT02456974, 2012-2019). Steady-state trough plasma concentrations were classified as therapeutic if greater than or equal to the minimum inhibitory concentration of the (suspected) pathogen. Factors associated with subtherapeutic concentrations and clinical outcome were identified by logistic regression analysis. SETTING: The pediatric and cardiac surgery ICU of a Belgian tertiary-care hospital. PATIENTS: One hundred fifty-seven patients (aged 1 mo to 15 yr) treated intravenously with amoxicillin-clavulanic acid, piperacillin-tazobactam, or meropenem. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Three hundred eighty-two trough concentrations were obtained from 157 patients (median age, 1.25 yr; interquartile range, 0.4-4.2 yr). Subtherapeutic concentrations were measured in 39 of 60 (65%), 43 of 48 (90%), and 35 of 49 (71%) of patients treated with amoxicillin-clavulanic acid, piperacillin-tazobactam, and meropenem, respectively. Estimates of glomerular filtration rate (eGFR; 54% increase in odds for each sd increase in value, 95% CI, 0.287-0.736; p = 0.001) and the absence of vasopressor treatment (2.8-fold greater odds, 95% CI, 1.079-7.253; p = 0.034) were independently associated with target nonattainment. We failed to identify an association between antibiotic concentrations and clinical failure. CONCLUSIONS: Subtherapeutic ß-lactam concentrations are common in critically ill children and correlate with renal function. eGFR equations may be helpful in identifying patients who may require higher dosing. Future studies should focus on the impact of subtherapeutic concentrations on clinical outcome.


Asunto(s)
Combinación Amoxicilina-Clavulanato de Potasio , beta-Lactamas , Antibacterianos/farmacocinética , Niño , Enfermedad Crítica/terapia , Humanos , Lactante , Meropenem , Combinación Piperacilina y Tazobactam , Factores de Riesgo , beta-Lactamas/farmacocinética , beta-Lactamas/uso terapéutico
2.
Br J Clin Pharmacol ; 88(12): 4965-4984, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34180088

RESUMEN

Developmental pharmacology describes the impact of maturation on drug disposition (pharmacokinetics, PK) and drug effects (pharmacodynamics, PD) throughout the paediatric age range. This paper, written by a multidisciplinary group of experts, summarizes current knowledge, and provides suggestions to pharmaceutical companies, regulatory agencies and academicians on how to incorporate the latest knowledge regarding developmental pharmacology and innovative techniques into neonatal and paediatric drug development. Biological aspects of drug absorption, distribution, metabolism and excretion throughout development are summarized. Although this area made enormous progress during the last two decades, remaining knowledge gaps were identified. Minimal risk and burden designs allow for optimally informative but minimally invasive PK sampling, while concomitant profiling of drug metabolites may provide additional insight in the unique PK behaviour in children. Furthermore, developmental PD needs to be considered during drug development, which is illustrated by disease- and/or target organ-specific examples. Identifying and testing PD targets and effects in special populations, and application of age- and/or population-specific assessment tools are discussed. Drug development plans also need to incorporate innovative techniques such as preclinical models to study therapeutic strategies, and shift from sequential enrolment of subgroups, to more rational designs. To stimulate appropriate research plans, illustrations of specific PK/PD-related as well as drug safety-related challenges during drug development are provided. The suggestions made in this joint paper of the Innovative Medicines Initiative conect4children Expert group on Developmental Pharmacology and the European Society for Developmental, Perinatal and Paediatric Pharmacology, should facilitate all those involved in drug development.


Asunto(s)
Modelos Biológicos , Farmacología , Humanos , Niño , Recién Nacido , Proyectos de Investigación , Recolección de Datos , Farmacocinética
3.
Int J Clin Pharm ; 43(5): 1394-1403, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33913087

RESUMEN

Background Correct dosing and therapeutic drug monitoring (TDM) practices are essential when aiming for optimal vancomycin treatment. Objective To assess target attainment after initial dosing and dose adjustments, and to determine compliance to dosing and TDM guidelines. Setting Tertiary care university hospital in Belgium. Method A chart review was performed in 150 patients, ranging from preterm infants to adults, treated intravenously with vancomycin. Patient characteristics, dosing and TDM data were compared to evidence-based hospital guidelines. Main outcome measures Target attainment of vancomycin after initial dosing and dose adjustments. Results Subtherapeutic concentrations were measured in 68% of adults, in 76% of children and in 52% of neonates after treatment initiation. Multiple dose adaptations (median 2, Q1 1-Q3 2) were required for target attainment, whilst more than 20% of children and neonates never reached targeted concentrations. Regarding compliance to the hospital guideline, some points of improvement were identified: omitted dose adjustment in adults with decreased renal function (53%), delayed sampling (16% in adults, 31% in children) and redundant sampling (34% of all samples in adults, 12% in children, 13% in neonates). Conclusion Target attainment for vancomycin with current dosing regimens and TDM is poor in all age groups. Besides, human factors should not be ignored when aiming for optimal treatment. This study reflects an ongoing challenge in clinical practice and highlights the need for optimization of vancomycin dosing strategies and improvement of awareness of all health care professionals involved.


Asunto(s)
Monitoreo de Drogas , Vancomicina , Antibacterianos/uso terapéutico , Niño , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Estudios Retrospectivos
4.
Eur J Clin Pharmacol ; 75(10): 1393-1404, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31312867

RESUMEN

PURPOSE: There is a need for alternative analgosedatives such as dexmedetomidine in neonates. Given the ethical and practical difficulties, protocol design for clinical trials in neonates should be carefully considered before implementation. Our objective was to identify a protocol design suitable for subsequent evaluation of the dosing requirements for dexmedetomidine in mechanically ventilated neonates. METHODS: A published paediatric pharmacokinetic model was used to derive the dosing regimen for dexmedetomidine in a first-in-neonate study. Optimality criteria were applied to optimise the blood sampling schedule. The impact of sampling schedule optimisation on model parameter estimation was assessed by simulation and re-estimation procedures for different simulation scenarios. The optimised schedule was then implemented in a neonatal pilot study. RESULTS: Parameter estimates were more precise and similarly accurate in the optimised scenarios, as compared to empirical sampling (normalised root mean square error: 1673.1% vs. 13,229.4% and relative error: 46.4% vs. 9.1%). Most importantly, protocol deviations from the optimal design still allowed reasonable parameter estimation. Data analysis from the pilot group (n = 6) confirmed the adequacy of the optimised trial protocol. Dexmedetomidine pharmacokinetics in term neonates was scaled using allometry and maturation, but results showed a 20% higher clearance in this population compared to initial estimates obtained by extrapolation from a slightly older paediatric population. Clearance for a typical neonate, with a post-menstrual age (PMA) of 40 weeks and weight 3.4 kg, was 2.92 L/h. Extension of the study with 11 additional subjects showed a further increased clearance in pre-term subjects with lower PMA. CONCLUSIONS: The use of optimal design in conjunction with simulation scenarios improved the accuracy and precision of the estimates of the parameters of interest, taking into account protocol deviations, which are often unavoidable in this event-prone population.


Asunto(s)
Analgésicos no Narcóticos/administración & dosificación , Analgésicos no Narcóticos/farmacocinética , Dexmedetomidina/administración & dosificación , Dexmedetomidina/farmacocinética , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/farmacocinética , Modelos Biológicos , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Respiración Artificial
5.
J Antimicrob Chemother ; 72(7): 2002-2011, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28387840

RESUMEN

Objectives: To characterize the population pharmacokinetics of piperacillin and tazobactam in critically ill infants and children, in order to develop an evidence-based dosing regimen. Patients and methods: This pharmacokinetic study enrolled patients admitted to the paediatric ICU for whom intravenous piperacillin/tazobactam (8:1 ratio) was indicated (75 mg/kg every 6 h based on piperacillin). Piperacillin/tazobactam concentrations were measured by an LC-MS/MS method. Pharmacokinetic data were analysed using non-linear mixed effects modelling. Results: Piperacillin and tazobactam blood samples were collected from 47 patients (median age 2.83 years; range 2 months to 15 years). Piperacillin and tazobactam disposition was best described by a two-compartment model that included allometric scaling and a maturation function to account for the effect of growth and age. Mean clearance estimates for piperacillin and tazobactam were 4.00 and 3.01 L/h for a child of 14 kg. Monte Carlo simulations showed that an intermittent infusion of 75 mg/kg (based on piperacillin) every 4 h over 2 h, 100 mg/kg every 4 h given over 1 h or a loading dose of 75 mg/kg followed by a continuous infusion of 300 mg/kg/24 h were the minimal requirements to achieve the therapeutic targets for piperacillin (60% f T >MIC >16 mg/L). Conclusions: Standard intermittent dosing regimens do not ensure optimal piperacillin/tazobactam exposure in critically ill patients, thereby risking treatment failure. The use of a loading dose followed by a continuous infusion is recommended for treatment of severe infections in children >2 months of age.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Infecciones Bacterianas/tratamiento farmacológico , Enfermedad Crítica , Ácido Penicilánico/análogos & derivados , Adolescente , Antibacterianos/sangre , Niño , Preescolar , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Humanos , Lactante , Infusiones Intravenosas , Masculino , Pruebas de Sensibilidad Microbiana , Método de Montecarlo , Ácido Penicilánico/administración & dosificación , Ácido Penicilánico/sangre , Ácido Penicilánico/farmacocinética , Piperacilina/administración & dosificación , Piperacilina/sangre , Piperacilina/farmacocinética , Combinación Piperacilina y Tazobactam , Estudios Prospectivos , Tazobactam
6.
J Antimicrob Chemother ; 72(3): 801-804, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27999035

RESUMEN

Objectives: The objectives of this observational study were to investigate plasma protein binding and to evaluate target attainment rates of vancomycin therapy in critically ill children. Patients and methods: Paediatric ICU patients, in whom intravenous intermittent dosing (ID) or continuous dosing (CD) with vancomycin was indicated, were included. Covariates on unbound vancomycin fraction and concentration were tested using a linear mixed model analysis and attainment of currently used pharmacokinetic/pharmacodynamic (PK/PD) targets was evaluated. Clinicaltrials.gov: NCT02456974. Results: One hundred and eighty-eight plasma samples were collected from 32 patients. The unbound vancomycin fraction (median = 71.1%; IQR = 65.4%-79.7%) was highly variable within and between patients and significantly correlated with total protein and albumin concentration, which were both decreased in our population. Total trough concentration (ID) and total concentration (CD) were within the aimed target concentrations in 8% of patients. The targets of AUC/MIC ≥400 and f AUC/MIC ≥200 were achieved in 54% and 83% of patients, respectively. Unbound vancomycin concentrations were adequately predicted using the following equation: unbound vancomycin concentration (mg/L) = 5.38 + [0.71 × total vancomycin concentration (mg/L)] - [0.085 × total protein concentration (g/L)]. This final model was externally validated using 51 samples from another six patients. Conclusions: The protein binding of vancomycin in our paediatric population was lower than reported in non-critically ill adults and exhibited large variability. Higher target attainment rates were achieved when using PK/PD indices based on unbound concentrations, when compared with total concentrations. These results highlight the need for protein binding assessment in future vancomycin PK/PD research.


Asunto(s)
Antibacterianos/farmacocinética , Proteínas Sanguíneas/metabolismo , Enfermedad Crítica/terapia , Vancomicina/farmacocinética , Adolescente , Antibacterianos/sangre , Antibacterianos/uso terapéutico , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Unidades de Cuidados Intensivos , Modelos Lineales , Masculino , Pruebas de Sensibilidad Microbiana , Estudios Prospectivos , Unión Proteica , Vancomicina/sangre , Vancomicina/metabolismo , Vancomicina/uso terapéutico
7.
J Antimicrob Chemother ; 72(3): 791-800, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27999040

RESUMEN

Objectives: The objective of this study was to characterize cefazolin serum pharmacokinetics in children before, during and after cardiopulmonary bypass (CPB), in order to derive an evidence-based dosing regimen. Patients and methods: This study included children who received cefazolin before surgical incision, before cessation of CPB and after surgery. Blood samples of total and unbound cefazolin concentrations were collected before, during and after CPB. The cefazolin concentration-time profiles were analysed using population pharmacokinetic modelling and predictors for interindividual variability in pharmacokinetic parameters were investigated. Subsequently, optimized dosing regimens were developed using stochastic simulations. Clinicaltrials.gov: NCT02749981. Results: A total of 494 total and unbound cefazolin concentrations obtained from 56 children (aged 6 days to 15 years) were included. A two-compartment model with first-order elimination plus an additional compartment for the effect of CPB best described the data. Clearance (1.56 L/h), central volume (1.93 L) and peripheral volume (2.39 L) were allometrically scaled by body weight. The estimated glomerular filtration rate (eGFR) was identified as a covariate on clearance and the serum albumin concentration was associated with maximum protein binding capacity. Our simulations showed that an additional bolus dose at the start of CPB improves the PTA in typical patients from 59% to >94%. Prolonged surgery and preserved renal function (i.e. drop in eGFR <25%) had a negative impact on PTA. Conclusions: We propose an optimized dosing regimen for cefazolin during cardiac surgery in paediatric patients to avoid treatment failure due to inadequate antibiotic prophylaxis.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Profilaxis Antibiótica , Puente Cardiopulmonar , Cefazolina/administración & dosificación , Cefazolina/farmacocinética , Adolescente , Antibacterianos/sangre , Cefazolina/sangre , Niño , Preescolar , Simulación por Computador , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Población , Estudios Prospectivos
8.
Antimicrob Agents Chemother ; 59(11): 7027-35, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26349821

RESUMEN

There is little data available to guide amoxicillin-clavulanic acid dosing in critically ill children. The primary objective of this study was to investigate the pharmacokinetics of both compounds in this pediatric subpopulation. Patients admitted to the pediatric intensive care unit (ICU) in whom intravenous amoxicillin-clavulanic acid was indicated (25 to 35 mg/kg of body weight every 6 h) were enrolled. Population pharmacokinetic analysis was conducted, and the clinical outcome was documented. A total of 325 and 151 blood samples were collected from 50 patients (median age, 2.58 years; age range, 1 month to 15 years) treated with amoxicillin and clavulanic acid, respectively. A three-compartment model for amoxicillin and a two-compartment model for clavulanic acid best described the data, in which allometric weight scaling and maturation functions were added a priori to scale for size and age. In addition, plasma cystatin C and concomitant treatment with vasopressors were identified to have a significant influence on amoxicillin clearance. The typical population values of clearance for amoxicillin and clavulanic acid were 17.97 liters/h/70 kg and 12.20 liters/h/70 kg, respectively. In 32% of the treated patients, amoxicillin-clavulanic acid therapy was stopped prematurely due to clinical failure, and the patient was switched to broader-spectrum antibiotic treatment. Monte Carlo simulations demonstrated that four-hourly dosing of 25 mg/kg was required to achieve the therapeutic target for both amoxicillin and clavulanic acid. For patients with augmented renal function, a 1-h infusion was preferable to bolus dosing. Current published dosing regimens result in subtherapeutic concentrations in the early period of sepsis due to augmented renal clearance, which risks clinical failure in critically ill children, and therefore need to be updated. (This study has been registered at Clinicaltrials.gov as an observational study [NCT02456974].).


Asunto(s)
Combinación Amoxicilina-Clavulanato de Potasio/administración & dosificación , Combinación Amoxicilina-Clavulanato de Potasio/farmacocinética , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Adolescente , Combinación Amoxicilina-Clavulanato de Potasio/uso terapéutico , Antibacterianos/uso terapéutico , Niño , Preescolar , Enfermedad Crítica , Femenino , Humanos , Lactante , Masculino , Método de Montecarlo , Estudios Prospectivos , Sepsis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...