Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Antibiotics (Basel) ; 12(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38136696

RESUMEN

Salmonella isolated from dairy farms has a significant effect on animal health and productivity. Different serogroups of Salmonella affect both human and bovine cattle causing illness in both reservoirs. Dairy cows and calves can be silent Salmonella shedders, increasing the possibility of dispensing Salmonella within the farm. The aim of this study was to determine the genomic characteristics of Salmonella isolates from dairy farms and to detect the presence of virulence and antimicrobial resistance genes. A total of 377 samples were collected in a cross-sectional study from calves, periparturient cow feces, and maternity beds in 55 dairy farms from the states of Aguascalientes, Baja California, Chihuahua, Coahuila, Durango, Mexico, Guanajuato, Hidalgo, Jalisco, Queretaro, San Luis Potosi, Tlaxcala, and Zacatecas. Twenty Salmonella isolates were selected as representative strains for whole genome sequencing. The serological classification of the strains was able to assign groups to only 12 isolates, but with only 5 of those being consistent with the genomic serotyping. The most prevalent serovar was Salmonella Montevideo followed by Salmonella Meleagridis. All isolates presented the chromosomal aac(6')-Iaa gene that confers resistance to aminoglycosides. The antibiotic resistance genes qnrB19, qnrA1, sul2, aph(6)-Id, aph(3)-ld, dfrA1, tetA, tetC, flor2, sul1_15, mph(A), aadA2, blaCARB, and qacE were identified. Ten pathogenicity islands were identified, and the most prevalent plasmid was Col(pHAD28). The main source of Salmonella enterica is the maternity areas, where periparturient shedders are contaminants and perpetuate the pathogen within the dairy in manure, sand, and concrete surfaces. This study demonstrated the necessity of implementing One Health control actions to diminish the prevalence of antimicrobial resistant and virulent pathogens including Salmonella.

2.
Viruses ; 15(7)2023 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-37515247

RESUMEN

This is the first viral metagenomic analysis of grapevine conducted in Mexico. During the summer of 2021, 48 plants displaying virus-like symptoms were sampled in Queretaro, an important grapevine-producing area of Mexico, and analyzed for the presence of viruses via high-throughput sequencing (HTS). The results of HTS were verified by real-time RT-PCR following a standardized testing scheme (Protocol 2010). Fourteen different viruses were identified, including grapevine asteroid mosaic-associated virus (GAMaV), grapevine Cabernet Sauvignon reovirus (GCSV), grapevine fanleaf virus (GFLV), grapevine fleck virus (GFkV), grapevine Pinot gris virus (GPGV), grapevine red globe virus (GRGV), grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine rupestris vein feathering virus (GRVFV), grapevine Syrah virus 1 (GSyV-1), grapevine virus B (GVB), and grapevine leafroll-associated viruses 1, 2, 3, 4 (GLRaV1, 2, 3, 4). Additionally, divergent variants of GLRaV4 and GFkV, and a novel Enamovirus-like virus were discovered. This is the first report of GAMaV, GCSV, GLRaV4, GPGV, GRGV, GRVFV, and GSyV-1 infecting grapevines in Mexico; the impact of these pathogens on production is unknown.


Asunto(s)
Luteoviridae , Vitis , México , Incidencia , Enfermedades de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Animals (Basel) ; 13(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36670847

RESUMEN

Overtraining syndrome (OTS) is the reduction in performance due to excess training and lack of proper recovery, which can lead to a chronic deprivation of energy and reduction in the repair of damage that can accumulate over time. Here, the effect of acute, intense physical exercise on the expression of innate and adaptive immune genes in 12 racing-bred American Quarter Horses, after resting for 3 days and immediately after intense exercise for 1.8 miles were compared. The expression of 84 genes related to innate and adaptive immune responses was analyzed. Significant variation among individuals and between sexes was observed. The analysis showed that five genes were differentially expressed in both females and males, three only in females, and two in males. The upregulated genes were IL13 (male only), CCR4 (female only), TLR6, TLR9 (female only), NFKBIA, CXCR3, and TLR4, while the downregulated genes were IL6 (female only), CD4 (male only), and MYD88. The three main pathways containing genes that were affected by acute, intense physical exercise were Th1 and Th2 cell differentiation, and the NF-kappa B and chemokine signaling pathways, suggesting the activation of the proinflammatory responses as a result of the stress from the acute exercise. Gene expression could be used to assess indications of OTS.

4.
Front Microbiol ; 13: 1041314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532492

RESUMEN

Objective: Bovine tuberculosis (bTB) is a chronic respiratory infectious disease of domestic livestock caused by intracellular Mycobacterium bovis infection, which causes ~$3 billion in annual losses to global agriculture. Providing novel tools for bTB managements requires a comprehensive understanding of the molecular regulatory mechanisms underlying the M. bovis infection. Nevertheless, a combination of different bioinformatics and systems biology methods was used in this study in order to clearly understand the molecular regulatory mechanisms of bTB, especially the immunomodulatory mechanisms of M. bovis infection. Methods: RNA-seq data were retrieved and processed from 78 (39 non-infected control vs. 39 M. bovis-infected samples) bovine alveolar macrophages (bAMs). Next, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules in non-infected control bAMs as reference set. The WGCNA module preservation approach was then used to identify non-preserved modules between non-infected controls and M. bovis-infected samples (test set). Additionally, functional enrichment analysis was used to investigate the biological behavior of the non-preserved modules and to identify bTB-specific non-preserved modules. Co-expressed hub genes were identified based on module membership (MM) criteria of WGCNA in the non-preserved modules and then integrated with protein-protein interaction (PPI) networks to identify co-expressed hub genes/transcription factors (TFs) with the highest maximal clique centrality (MCC) score (hub-central genes). Results: As result, WGCNA analysis led to the identification of 21 modules in the non-infected control bAMs (reference set), among which the topological properties of 14 modules were altered in the M. bovis-infected bAMs (test set). Interestingly, 7 of the 14 non-preserved modules were directly related to the molecular mechanisms underlying the host immune response, immunosuppressive mechanisms of M. bovis, and bTB development. Moreover, among the co-expressed hub genes and TFs of the bTB-specific non-preserved modules, 260 genes/TFs had double centrality in both co-expression and PPI networks and played a crucial role in bAMs-M. bovis interactions. Some of these hub-central genes/TFs, including PSMC4, SRC, BCL2L1, VPS11, MDM2, IRF1, CDKN1A, NLRP3, TLR2, MMP9, ZAP70, LCK, TNF, CCL4, MMP1, CTLA4, ITK, IL6, IL1A, IL1B, CCL20, CD3E, NFKB1, EDN1, STAT1, TIMP1, PTGS2, TNFAIP3, BIRC3, MAPK8, VEGFA, VPS18, ICAM1, TBK1, CTSS, IL10, ACAA1, VPS33B, and HIF1A, had potential targets for inducing immunomodulatory mechanisms by M. bovis to evade the host defense response. Conclusion: The present study provides an in-depth insight into the molecular regulatory mechanisms behind M. bovis infection through biological investigation of the candidate non-preserved modules directly related to bTB development. Furthermore, several hub-central genes/TFs were identified that were significant in determining the fate of M. bovis infection and could be promising targets for developing novel anti-bTB therapies and diagnosis strategies.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36360888

RESUMEN

The spread of beta-lactamase-producing bacteria is of great concern and the environment has been found to be a main source of contamination. Herein, it was proposed to determine the frequency of antimicrobial-resistant-Gram-negative bacteria throughout the Lerma River basin using phenotypic and molecular methods. Resistant bacteria were isolated with chromogenic media and antimicrobial susceptibility tests were used to characterize their resistance. ARGs for beta-lactams, aminoglycosides, and quinolones were detected by PCR. Species were identified by Sanger sequencing the 16S rRNA gene and the representative genomes of MDR strains were sequenced by NGS. A high variation in the number of isolates was observed in the 20 sampled sites, while observing a low diversity among the resistant bacteria. Of the 12 identified bacterial groups, C. freundii, E. coli, and S. marcescens were more predominant. A high frequency of resistance to beta-lactams, quinolones, and aminoglycosides was evidenced, where the blaCTX,qnrB, qnrS y, and aac(6')lb-cr genes were the most prevalent. C. freundii showed the highest frequency of MDR strains. Whole genome sequencing revealed that S. marcescens and K. pneumoniae showed a high number of shared virulence and antimicrobial resistance genes, while E. coli showed the highest number of unique genes. The contamination of the Lerma River with MDR strains carrying various ARGs should raise awareness among environmental authorities to assess the risks and regulations regarding the optimal hygienic and sanitary conditions for this important river that supports economic activities in the different communities in Mexico.


Asunto(s)
Antibacterianos , Quinolonas , Antibacterianos/farmacología , Ríos/microbiología , Escherichia coli , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S , México , beta-Lactamasas/genética , Farmacorresistencia Microbiana , Klebsiella pneumoniae/genética , beta-Lactamas , Aminoglicósidos/farmacología , Quinolonas/farmacología , Farmacorresistencia Bacteriana Múltiple/genética
6.
3 Biotech ; 12(10): 270, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36101546

RESUMEN

Stem cells are undifferentiated cells that have multi-lineage differentiation. The transition from self-renewal to differentiation requires rapid and extensive gene expression alterations. Since different stem cells exhibit diverse non-coding RNAs (ncRNAs) expression profiles, the critical roles of ncRNAs in stem cell reprogramming, pluripotency maintenance, and differentiation have been widely investigated over the past few years. Hence, in this current review, the two main categories of ncRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are discussed. While the primary way by which miRNAs restrict mRNA transcription is through miRNA-mRNA interaction, lncRNAs have a wide range of effects on mRNA functioning, including interactions with miRNAs. Both of these ncRNAs participate in the post-transcriptional regulation of crucial biological mechanisms, such as cell cycle regulation, apoptosis, aging, and cell fate decisions. These findings shed light on a previously unknown aspect of gene regulation in stem cell fate determination and behavior. Overall, we summarized the key roles of miRNAs (including exosomal miRNAs) and lncRNAs in the regulation of stem cell populations, such as cardiac, hematopoietic, mesenchymal, neural, and spermatogonial, as well ncRNAs' influence on malignancy through modulating cancer stem cells, which might significantly contribute to clinical stem cell therapy and in regenerative medicine.

7.
Cancers (Basel) ; 14(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35454775

RESUMEN

Cancer is the second cause of mortality worldwide. Early diagnosis of this multifactorial disease is challenging, especially in populations with limited access to healthcare services. A vast repertoire of cancer biomarkers has been studied to facilitate early diagnosis; particularly, the use of antibodies against these biomarkers has been of interest to detect them through biorecognition. However, there are certain limitations to this approach. Emerging biorecognition engineering technologies are alternative methods to generate molecules and molecule-based scaffolds with similar properties to those presented by antibodies. Molecularly imprinted polymers, recombinant antibodies, and antibody mimetic molecules are three novel technologies commonly used in scientific studies. This review aimed to present the fundamentals of these technologies and address questions about how they are implemented for cancer detection in recent scientific studies. A systematic analysis of the scientific peer-reviewed literature regarding the use of these technologies on cancer detection was carried out starting from the year 2000 up to 2021 to answer these questions. In total, 131 scientific articles indexed in the Web of Science from the last three years were included in this analysis. The results showed that antibody mimetic molecules technology was the biorecognition technology with the highest number of reports. The most studied cancer types were: multiple, breast, leukemia, colorectal, and lung. Electrochemical and optical detection methods were the most frequently used. Finally, the most analyzed biomarkers and cancer entities in the studies were carcinoembryonic antigen, MCF-7 cells, and exosomes. These technologies are emerging tools with adequate performance for developing biosensors useful in cancer detection, which can be used to improve cancer diagnosis in developing countries.

9.
Arch Biochem Biophys ; 699: 108763, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33460581

RESUMEN

MicroRNAs (miRNAs) are small non-coding highly conserved RNA molecules that can act as master regulators of gene expression in a sequence-specific manner either by translation repression or mRNA degradation, influencing a wide range of biologic processes that are essential for the maintenance of cellular homeostasis. Chronic pediatric diseases are the leading cause of death worldwide among children and the recent evidence indicates that aberrant miRNA expression significantly contributes to the development of chronic pediatric diseases. This review focuses on the role of miRNAs in five major chronic pediatric diseases including bronchial asthma, congenital heart diseases, cystic fibrosis, type 1 diabetes mellitus, and epilepsy, and their potential use as novel biomarkers for the diagnosis and prognosis of these disorders.


Asunto(s)
Asma/fisiopatología , Fibrosis Quística/fisiopatología , Diabetes Mellitus Tipo 1/fisiopatología , Epilepsia/fisiopatología , Cardiopatías Congénitas/fisiopatología , MicroARNs/fisiología , Asma/diagnóstico , Asma/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Enfermedad Crónica , Fibrosis Quística/diagnóstico , Fibrosis Quística/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/metabolismo , Epilepsia/diagnóstico , Epilepsia/metabolismo , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/metabolismo , Humanos , MicroARNs/sangre , MicroARNs/metabolismo , Pediatría , Pronóstico
10.
Front Immunol ; 11: 580412, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117386

RESUMEN

Interferons are secretory proteins induced in response to specific extracellular stimuli which stimulate intra- and intercellular networks for regulating innate and acquired immunity, resistance to viral infections, and normal and tumor cell survival and death. Type 1 interferons plays a major role in the CD8 T-cell response to viral infection. The genomic analysis carried out here for type I interferons within Bovidae family shows that cattle, bison, water buffalo, goat, and sheep (all Bovidae), have different number of genes of the different subtypes, with a large increase in the numbers, compared to human and mouse genomes. A phylogenetic analysis of the interferon alpha (IFNA) proteins in this group shows that the genes do not follow the evolutionary pattern of the species, but rather a cycle of duplications and deletions in the different species. In this study we also studied the genetic diversity of the bovine interferon alpha A (IFNAA), as an example of the IFNA genes in cattle, sequencing a fragment of the coding sequence in 18 breeds of cattle from Pakistan, Nigeria and USA. Similarity analysis allowed the allocation of sequences into 22 haplotypes. Bhagnari, Brangus, Sokoto Gudali, and White Fulani, had the highest number of haplotypes, while Angus, Hereford and Nari Master had the least. However, when analyzed by the average haplotype count, Angus, Bhagnari, Hereford, Holstein, Muturu showed the highest values, while Cholistani, Lohani, and Nari Master showed the lowest values. Haplotype 4 was found in the highest number of individuals (74), and in 15 breeds. Sequences for yak, bison, and water buffalo, were included within the bovine haplotypes. Medium Joining network showed that the sequences could be divided into 4 groups: one with highly similar haplotypes containing mostly Asian and African breeds, one with almost all of the Bos taurus American breeds, one mid-diverse group with mostly Asian and African sequences, and one group with highly divergent haplotypes with five N'Dama sequences and one from each of White Fulani, Dhanni, Tharparkar, and Bhagnari. The large genetic diversity found in IFNAA could be a very good indication of the genetic variation among the different genes of IFNA and could be an adaptation for these species in response to viral challenges they face.


Asunto(s)
Genotipo , Interferón alfa-2/genética , Animales , Evolución Biológica , Bison , Búfalos , Bovinos , Evolución Molecular , Variación Genética , Cabras , Haplotipos , Fenotipo , Filogenia , Ovinos
11.
J Anim Sci Technol ; 62(2): 141-158, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32292922

RESUMEN

Skin is a major thermoregulatory organ in the body controlling homeothermy, a critical function for climate adaptation. We compared genes expressed between tropical- and temperate-adapted cattle to better understand genes involved in climate adaptation and hence thermoregulation. We profiled the skin of representative tropical and temperate cattle using RNA-seq. A total of 214,754,759 reads were generated and assembled into 72,993,478 reads and were mapped to unique regions in the bovine genome. Gene coverage of unique regions of the reference genome showed that of 24,616 genes, only 13,130 genes (53.34%) displayed more than one count per million reads for at least two libraries and were considered suitable for downstream analyses. Our results revealed that of 255 genes expressed differentially, 98 genes were upregulated in tropically-adapted White Fulani (WF; Bos indicus) and 157 genes were down regulated in WF compared to Angus, AG (Bos taurus). Fifteen pathways were identified from the differential gene sets through gene ontology and pathway analyses. These include the significantly enriched melanin metabolic process, proteinaceous extracellular matrix, inflammatory response, defense response, calcium ion binding and response to wounding. Quantitative PCR was used to validate six representative genes which are associated with skin thermoregulation and epithelia dysfunction (mean correlation 0.92; p < 0.001). Our results contribute to identifying genes and understanding molecular mechanisms of skin thermoregulation that may influence strategic genomic selection in cattle to withstand climate adaptation, microbial invasion and mechanical damage.

12.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150894

RESUMEN

Pyrocystis lunula is considered a model organism due to its bioluminescence capacity linked to circadian rhythms. The mechanisms underlying the bioluminescent phenomenon have been well characterized in dinoflagellates; however, there are still some aspects that remain an enigma. Such is the case of the presence and diversity of the luciferin-binding protein (LBP), as well as the synthesis process of luciferin. Here we carry out a review of the literature in relation to the molecular players responsible for bioluminescence in dinoflagellates, with particular interest in P. lunula. We also carried out a phylogenetic analysis of the conservation of protein sequence, structure and evolutionary pattern of these key players. The basic structure of the luciferase (LCF) is quite conserved among the sequences reported to date for dinoflagellate species, but not in the case of the LBP, which has proven to be more variable in terms of sequence and structure. In the case of luciferin, its synthesis has been shown to be complex process with more than one metabolic pathway involved. The glutathione S-transferase (GST) and the P630 or blue compound, seem to be involved in this process. In the same way, various hypotheses regarding the role of bioluminescence in dinoflagellates are exposed.


Asunto(s)
Dinoflagelados/enzimología , Luciferasas/análisis , Luminiscencia , Animales , Humanos , Mediciones Luminiscentes
13.
J Anim Sci Biotechnol ; 11: 14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095237

RESUMEN

BACKGROUND: Previous studies have evaluated the metabolic status of animals fed direct-fed microbial (DFM) using enzyme-based assays which are time-consuming and limited to a few metabolites. In addition, little emphasis has been placed on investigating the effects of DFM on hindgut microbiota. We examined the effects of dietary supplementation of a blend of Saccharomyces cerevisiae-based DFM and fermentation products on the plasma concentrations of carbonyl-containing metabolites via a metabolomics approach, and fecal bacterial community, via 16S rRNA gene sequencing, of beef steers during a 42-day receiving period. Forty newly weaned steers were randomly assigned to receive a basal diet with no additive (CON; n = 20) or a basal diet supplemented with 19 g of Commence™ (PROB; n = 20) for a 42-day period. Commence™ (PMI, Arden Hills, MN) is a blend of 6.2 × 1011 cfu/g of S. cerevisiae, 3.5 × 1010 cfu/g of a mixture of Enterococcus lactis, Bacillus subtilis, Enterococcus faecium, and Lactobacillus casei, and the fermentation products of these aforementioned microorganisms and those of Aspergillus oryzae and Aspergillus niger. On d 0 and 40, rectal fecal samples were collected randomly from 10 steers from each treatment group. On d 42, blood was collected for plasma preparation. RESULTS: A total number of 812 plasma metabolites were detected. Up to 305 metabolites [fold change (FC) ≥ 1.5, FDR ≤ 0.01] including glucose, hippuric acid, and 5-hydroxykynurenamine were increased by PROB supplementation, whereas 199 metabolites (FC ≤ 0.63, FDR ≤ 0.01) including acetoacetate were reduced. Supplementation of PROB increased (P ≤ 0.05) the relative abundance of Prevotellaceae UCG-003, Megasphaera, Dorea, Acetitomaculum, and Blautia. In contrast, the relative abundance of Elusimicrobium, Moheibacter, Stenotrophomonas, Comamonas, and uncultured bacterium belonging to family p-2534-18B5 gut group (phylum Bacteroidetes) were reduced (P ≤ 0.05). CONCLUSIONS: The results of this study demonstrated that supplementation of PROB altered both the plasma carbonyl metabolome towards increased glucose concentration suggesting an improved energy status, and fecal bacterial community, suggesting an increased hindgut fermentation of the beef steers.

14.
Rev Panam Salud Publica ; 44, sept. 2020
Artículo en Inglés | PAHO-IRIS | ID: phr-52322

RESUMEN

[ABSTRACT]. Objective. To characterize carbapenemase-producing Klebsiella pneumoniae isolated from patients treated at a hospital in Cumaná, Sucre, Venezuela. Methods. This was a retrospective study conducted at the general hospital in Cumaná where 58 K. pneumoniae strains were analyzed for resistance to antimicrobials, specifically carbapenems, in January – June 2015. Production of metallo-β-lactamases and serine carbapenemases was determined by the double-disc synergy test, using EDTA-sodium mercaptoacetic acid and 3-aminophenyl boronic acid discs, respectively. Multiplex-PCR was used to detect genes coding for carbapenemases. Molecular typing using ERIC-PCR determined the presence of clones. Results. Four strains of K. pneumoniae resistant to carbapenems were identified. Phenotypic methods for detection of metallo-β-lactamases and serine carbapenemases were positive, and PCR demonstrated the co-presence of blaNDM and blaKPC genes in all four strains. ERIC-PCR identified two clones circulating in the hospital. Conclusions. Infection control strategies are needed at the central hospital in Cumaná and its surrounding areas to prevent the spread of these pathogens, especially given the high levels of migration from Venezuela to other countries in South America.


[RESUMEN]. Objetivo. Caracterizar la Klebsiella pneumoniae productora de carbapenemasa aislada de pacientes tratados en un hospital de Cumaná (Sucre, Venezuela). Métodos. Se hizo un estudio retrospectivo en el hospital central de Cumaná, donde se analizaron 58 cepas de k. pneumoniae para estudiar la resistencia a los antimicrobianos, específicamente a los fármacos carbapenémicos, entre enero y junio del 2015. La producción de metalo-β-lactamasas y carbapenemasas de serina se determinó mediante la prueba de sinergia de doble disco, usando discos de EDTA SMA de sodio y de ácido borónico 3 aminofenil, respectivamente. Se usó la PCR múltiple para detectar la codificación de genes correspondiente a las carbapenemasas. Se determinó la presencia de clones por tipificación molecular mediante la técnica de ERIC PCR. Resultados. Se detectaron cuatro cepas de K. pneumoniae resistentes a los fármacos carbapenémicos. Los métodos fenotípicos para la detección de metalo-β-lactamasas y carbapenemasas de serina fueron positivos y se demostró mediante la PCR la copresencia de los genes blaNDM y blaKPC en las cuatro cepas. Por medio de la técnica ERIC-PCR se detectaron dos clones que circulaban en el hospital. Conclusiones. Es necesario adoptar estrategias de control de infecciones en el hospital central en Cumaná y las zonas circundantes para prevenir la propagación de estos agentes patógenos, especialmente dados los niveles altos de migración de Venezuela a otros países de América del Sur.


[RESUMO]. Objetivo. Caracterizar cepas de Klebsiella pneumoniae produtoras de carbapenemases isoladas de pacientes tratados em um hospital em Cumaná, Sucre, na Venezuela. Métodos. Realizamos um estudo retrospectivo no hospital geral de Cumaná, onde 58 cepas de K. pneumoniae foram analisadas para verificar a resistência a antimicrobianos, especificamente carbapenens, entre janeiro e junho de 2015. A produção de metalo-β-lactamases e serino-carbapenemases foi determinada pelo teste de sinergia de disco duplo, usando discos de EDTA sódico-ácido mercaptoacético e ácido 3-aminofenil borônico, respectivamente. Utilizamos a PCR multiplex para detectar os genes codificadores de carbapenemases. A tipagem molecular por ERIC-PCR determinou a presença de clones. Resultados. Foram identificadas quatro cepas de K. pneumoniae resistentes a carbapenens. Os métodos fenotípicos para a detecção de metalo-β-lactamases e serino-carbapenemases foram positivos, e a PCR demonstrou a co-presença dos genes blaNDM e blaKPC em todas as quatro cepas. A ERIC-PCR identificou dois clones que circulavam no hospital. Conclusões. São necessárias estratégias de controle de infecções no hospital central de Cumaná e seus arredores para prevenir a disseminação destes patógenos, especialmente devido aos altos níveis de migração da Venezuela para outros países da América do Sul.


Asunto(s)
Klebsiella pneumoniae , Enterobacteriaceae Resistentes a los Carbapenémicos , Tipificación Molecular , Venezuela , Enterobacteriaceae Resistentes a los Carbapenémicos , Tipificación Molecular , Enterobacteriaceae Resistentes a los Carbapenémicos , Tipificación Molecular
15.
Biomedica ; 39(s1): 96-107, 2019 05 01.
Artículo en Inglés, Español | MEDLINE | ID: mdl-31529852

RESUMEN

INTRODUCTION: The treatment of urinary tract infections has become more challenging due to the increasing frequency of multidrug-resistant Escherichia coli in human populations. OBJECTIVE: To characterize multidrug-resistant E. coli isolates causing community-acquired urinary tract infections in Cumaná, Venezuela, and associate possible risk factors for infection by extended-spectrum beta-lactamases (ESBL)-producing isolates. MATERIALS AND METHODS: We included all the patients with urinary tract infections attending the urology outpatient consultation and emergency unit in the Hospital de Cumaná, Estado Sucre, Venezuela, from January through June, 2014. blaTEM, blaSHV and blaCTX-M genes detection was carried out by PCR. RESULTS: We found a high prevalence of multidrug-resistant E. coli (25.2%) with 20.4% of the isolates producing ESBL. The ESBL-producing isolates showed a high frequency (66.7%) of simultaneous resistance to trimethoprim-sulphamethoxazole, fluoroquinolones and aminoglycosides compared to non-producing isolates (2.4%). Of the resistant isolates, 65.4% carried the blaTEM gene, 34.6% the blaCTX-M and 23.1% the blaSHV. The blaCTX-M genes detected belonged to the CTX-M-1 and CTX-M-2 groups. Plasmid transfer was demonstrated by in vitro conjugation in 17 of the 26 ESBL-producing isolates. All three genes detected were transferred to the transconjugants. Age over 60 years, complicated urinary tract infections and previous use of a catheter predisposed patients to infection by ESBL-producing E. coli. CONCLUSIONS: The high frequency of multidrug-resistant ESBL-producing isolates should alert the regional health authorities to take measures to reduce the risk of outbreaks caused by these types of bacteria in the community.


Introducción. El tratamiento de las infecciones urinarias constituye un reto creciente por el aumento de Escherichia coli proveniente de la comunidad multirresistente a los medicamentos. Objetivo. Caracterizar aislamientos de E. coli multirresistente causantes de infecciones urinarias adquiridas en la comunidad en Cumaná, Venezuela, y detectar los posibles riesgos de infección por aislamientos productores de betalactamasas de espectro extendido (BLEE). Materiales y métodos. Se incluyeron todos los pacientes atendidos en la consulta externa de urología y en urgencias del Hospital de Cumaná entre enero y junio de 2014 y que evidenciaban infecciones urinarias. La detección de los genes blaTEM, blaSHV y blaCTX-M se hizo mediante la reacción en cadena de la polimerasa (PCR). Resultados. Se encontró una alta prevalencia de E. coli multirresistente a los medicamentos (25,2 %), con 20,4 % de aislamientos productores de BLEE y una gran frecuencia de resistencia simultánea a trimetoprim-sulfametoxazol, fluoroquinolonas y aminoglucósidos (66,7 %) comparados con los no productores (2,4 %). En el 65,4 % de los aislamientos resistentes, se encontró el gen blaTEM; en 34,6 %, el blaCTX-M, y en 23,1 %, el blaSHV. Los genes blaCTX-M detectados pertenecían a los grupos CTX-M-1 y CTX-M-2. Se demostró la transferencia in vitro de plásmidos por conjugación en 17 de los 26 aislamientos productores de BLEE. Los tres tipos de genes detectados se transfirieron a los transconjugantes. La edad mayor de 60 años, las infecciones urinarias con complicaciones y el uso previo de catéter, predispusieron a la infección por cepas de E. coli productoras de BLEE. Conclusiones. La gran frecuencia de aislamientos multirresistentes productores de BLEE debería alertar a las autoridades sanitarias para tomar medidas que reduzcan el riesgo de epidemias causadas por este tipo de bacterias en la comunidad.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli/epidemiología , Escherichia coli/efectos de los fármacos , Infecciones Urinarias/microbiología , Adolescente , Adulto , Anciano , Niño , Infecciones Comunitarias Adquiridas/epidemiología , Infecciones Comunitarias Adquiridas/microbiología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pacientes Ambulatorios , Prevalencia , Estudios Retrospectivos , Riesgo , Factores de Riesgo , Especificidad por Sustrato , Infecciones Urinarias/epidemiología , Venezuela/epidemiología , Adulto Joven , Resistencia betalactámica , beta-Lactamasas/análisis , beta-Lactamasas/genética
16.
J Proteomics ; 209: 103502, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31465862

RESUMEN

Pyrocystis lunula (Schutt) is a photoautotrophic dinoflagellate without armored form, frequently found in marine environments. Today, there are several biotechnological applications derived from the bioluminescent system of this species. From a post-genomic perspective, in order to have a starting point for studying the proteome of P. lunula, an "omics" approach (transcriptomics-proteomics) was assessed using fresh microalgae samples. A total of 80,874,825 raw reads were generated (11,292,087,505 bp; 55.82% GC) by mRNA sequencing. Very high-quality sequences were assembled into 414,295 contigs (219,203,407 bp; 55.38% GC) using Trinity software, generating a comprehensive reference transcriptome for this species. Then, a P. lunula proteome was inferred and further employed for its analysis on this species. A total of 17,461 peptides were identified, yielding 3182 protein identification hits, including 175 novel proteins. The identified proteins were further categorized according to functional description and gene ontology classification. SIGNIFICANCE: The major contribution of the present work is making available a reference transcriptome and proteome of P. lunula, that is now accessible for the research community, and a functional description of the 3182 proteins inferred from the transcriptome, including 175 novel proteins, which have already been deposited in the ProteomeXchange and NCBI SRA databases, respectively. In addition to this, a series of important factors related to the bioluminescent system and the regulation of gene expression, were identified and described.


Asunto(s)
Dinoflagelados/química , Proteómica/métodos , Regulación de la Expresión Génica , Proteínas Luminiscentes , Proteoma/análisis , Programas Informáticos , Transcriptoma
17.
F1000Res ; 7: 1504, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542619

RESUMEN

Background: Heat shock proteins (HSPs) are molecular chaperones known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, we carried out a computational genome-wide survey of the bovine genome. For this, HSP sequences from each subfamily (sHSP, HSP40, HSP70 and HSP90) were used to search the Pfam (Protein family) database, for identifying exact HSP domain sequences based on the hidden Markov model. ProtParam tool was used to compute potential physico-chemical parameters detectable from a protein sequence. Evolutionary trace (ET) method was used to extract evolutionarily functional residues of a homologous protein family. Results: We computationally identified 67 genes made up of 10, 43, 10 and 4 genes belonging to small HSP, HSP40, HSP70 and HSP90 families respectively. These genes were widely dispersed across the bovine genome, except in chromosomes 24, 26 and 27, which lack bovine HSP genes. We found an uncharacterized outer dense fiber ( ODF1) gene in cattle with an intact alpha crystallin domain, like other small HSPs. Physico-chemical characteristic of aliphatic index was higher in HSP70 and HSP90 gene families, compared to small HSP and HSP40. Grand average hydropathy showed that small HSP (sHSP), HSP40, HSP70 and HSP90 genes had negative values except for DNAJC22, a member of HSP40 gene family. The uniqueness of DNAJA3 and DNAJB13 among HSP40 members, based on multiple sequence alignment, evolutionary trace analysis and sequence identity dendrograms, suggests evolutionary distinct structural and functional features, with unique roles in substrate recognition and chaperone functions. The monophyletic pattern of the sequence identity dendrograms of cattle, human and mouse HSP sequences suggests functional similarities. Conclusions: Our computational results demonstrate the first-pass in-silico identification of heat shock proteins and calls for further investigation to better understand their functional roles and mechanisms in Bovidae.


Asunto(s)
Estudio de Asociación del Genoma Completo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Bovinos , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Proteínas de Choque Térmico , Humanos , Ratones , Chaperonas Moleculares , Filogenia
18.
J Genomics ; 6: 88-97, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29928467

RESUMEN

Genetic polymorphisms and diversity of BoLA-DRB3.2 are essential because of DRB3 gene's function in innate immunity and its association with infectious diseases resistance or tolerance in cattle. The present study was aimed at assessing the level of genetic diversity of DRB3 in the exon 2 (BoLA-DRB3.2) region in African, American and Asian cattle breeds. Amplification of exon 2 in 174 cattle revealed 15 haplotypes. The breeds with the highest number of haplotypes were Brangus (10), Sokoto Gudali (10) and Dajal (9), while the lowest number of haplotypes were found in Holstein and Sahiwal with 4 haplotypes each. Medium Joining network obtained from haplotypic data showed that all haplotypes condensed around a centric area and each sequence (except in H-3, H-51 and H-106) representing almost a specific haplotype. The BoLA-DRB3.2 sequence analyses revealed a non-significant higher rate of non-synonymous (dN) compared to synonymous substitutions (dS). The ratio of dN/dS substitution across the breeds were observed to be greater than one suggesting that variation at the antigen-binding sites is under positive selection; thus increasing the chances of these breeds to respond to wide array of pathogenic attacks. An analysis of molecular variance revealed that 94.01 and 5.99% of the genetic variation was attributable to differences within and among populations, respectively. Generally, results obtained suggest that within breed genetic variation across breeds is higher than between breeds. This genetic information will be important for investigating the relationship between BoLADRB3.2 and diseases in various cattle breeds studied with attendant implication on designing breeding programs that will aim at selecting individual cattle that carry resistant alleles.

19.
J Genomics ; 6: 1-8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29290829

RESUMEN

DNAJA1 or heat shock protein 40 (Hsp40) is associated with heat adaptation in various organisms. We amplified and sequenced a total of 1,142 bp of bovine Hsp40 gene representing the critical N-terminal (NTR) and C-terminal (CTR) regions in representative samples of African, Asian and American cattle breeds. Eleven and 9 different haplotypes were observed in the NTR in Asian and African breeds respectively while in American Brangus, only two mutations were observed resulting in two haplotypes. The CTR appears to be highly conserved between cattle and yak. In-silico functional analysis with PANTHER predicted putative deleterious functional impact of c.161 T>A; p. V54Q while alignment of bovine and human NTR-J domains revealed that p.Q19H, p.E20Q and p. E21X mutations occurred in helix 2 and p.V54Q missense mutation occurred in helix 3 respectively. The 124 bp insertion found in the yak DNAJA1 ortholog may have significant functional relevance warranting further investigation. Our results suggest that these genetic differences may be concomitant with population genetic history and possible functional consequences for climate adaptation in bovidae.

20.
J Anim Sci Technol ; 60: 32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30598832

RESUMEN

BACKGROUND: Necdin (NDN), a member of the melanoma antigen family showing imprinted pattern of expression, has been implicated as causing Prader-Willi symptoms, and known to participate in cellular growth, cellular migration and differentiation. The region where NDN is located has been associated to QTLs affecting reproduction and early growth in cattle, but location and functional analysis of the molecular mechanisms have not been established. METHODS: Here we report the sequence variation of the entire coding sequence from 72 samples of cattle, yak, buffalo, goat and sheep, and discuss its variation in Bovidae. Median-joining network analysis was used to analyze the variation found in the species. Synonymous and non-synonymous substitution rates were determined for the analysis of all the polymorphic sites. Phylogenetic analysis were carried out among the species of Bovidae to reconstruct their relationships. RESULTS: From the phylogenetic analysis with the consensus sequences of the studied Bovidae species, we found that only 11 of the 26 nucleotide changes that differentiate them produced amino acid changes. All the SNPs found in the cattle breeds were novel and showed similar percentages of nucleotides with non-synonymous substitutions at the N-terminal, MHD and C-terminal (12.3, 12.8 and 12.5%, respectively), and were much higher than the percentage of synonymous substitutions (2.5, 2.6 and 4.9%, respectively). Three mutations in cattle and one in sheep, detected in heterozygous individuals were predicted to be deleterious. Additionally, the analysis of the biochemical characteristics in the most common form of the proteins in each species show very little difference in molecular weight, pI, net charge, instability index, aliphatic index and GRAVY (Table 4) in the Bovidae species, except for sheep, which had a higher molecular weight, instability index and GRAVY. CONCLUSIONS: There is sufficient variation in this gene within and among the studied species, and because NDN carry key functions in the organism, it can have effects in economically important traits in the production of these species. NDN sequence is phylogenetically informative in this group, thus we propose this gene as a phylogenetic marker to study the evolution and conservation in Bovidae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...