Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Children (Basel) ; 10(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37761403

RESUMEN

Pathogenic loss-of-function variants in the IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause intellectual disability with Rett syndrome (RTT)-like features. The aim of this study was to obtain systematic information on the natural history and extra-central nervous system (CNS) manifestations for the Italian IQSEC2 population (>90%) by using structured family interviews and semi-quantitative questionnaires. IQSEC2 encephalopathy prevalence estimate was 7.0 to 7.9 × 10-7. Criteria for typical RTT were met in 42.1% of the cases, although psychomotor regression was occasionally evidenced. Genetic diagnosis was occasionally achieved in infancy despite a clinical onset before the first 24 months of life. High severity in both the CNS and extra-CNS manifestations for the IQSEC2 patients was documented and related to a consistently adverse quality of life. Neurodevelopmental delay was diagnosed before the onset of epilepsy by 1.8 to 2.4 years. An earlier age at menarche in IQSEC2 female patients was reported. Sleep disturbance was highly prevalent (60 to 77.8%), with mandatory co-sleeping behavior (50% of the female patients) being related to de novo variant origin, younger age, taller height with underweight, better social interaction, and lower life quality impact for the family and friends area. In conclusion, the IQSEC2 encephalopathy is a rare and likely underdiagnosed developmental encephalopathy leading to an adverse life quality impact.

2.
Tissue Cell ; 84: 102189, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37549512

RESUMEN

Here we describe the development and optimization of a new protocol for the preparation and surface imaging by scanning electron microscope of human erythrocytes from blood micro-samples obtained by finger prick. By testing several key pre-analytical conditions for blood sampling, erythrocyte preservation, storage and imaging, we designed a rapid new minimally-invasive reproducible method for obtaining uniform deposition of an adequate number of erythrocytes with well-preserved morphology on a substrate. The possibility of obtaining reliable reproducible high resolution morphometric data on peripheral erythrocytes makes this protocol valuable for diagnostic and basic research purposes.


Asunto(s)
Eritrocitos , Humanos , Microscopía Electrónica de Rastreo
3.
Front Neurol ; 13: 833239, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422749

RESUMEN

Background: Breathing abnormalities are common in Rett syndrome (RTT), a pervasive neurodevelopmental disorder almost exclusively affecting females. RTT is linked to mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. Our aim was to assess the clinical relevance of apneas during sleep-wakefulness cycle in a population with RTT and the possible impact of apneas on circulating oxidative stress markers. Methods: Female patients with a clinical diagnosis of typical RTT (n = 66), MECP2 gene mutation, and apneas were enrolled (mean age: 12.5 years). Baseline clinical severity, arterial blood gas analysis, and red blood cell count were assessed. Breathing was monitored during the wakefulness and sleep states (average recording time: 13 ± 0.5 h) with a portable polygraphic screening device. According to prevalence of breath holdings, the population was categorized into the wakefulness apnea (WA) and sleep apnea (SA) groups, and apnea-hypopnea index (AHI) was calculated. The impact of respiratory events on oxidative stress was assessed by plasma and intra-erythrocyte non-protein-bound iron (P-NPBI and IE-NPBI, respectively), and plasma F2-isoprostane (F2-IsoP) assays. Results: Significant prevalence of obstructive apneas with values of AHI > 15 was present in 69.7% of the population with RTT. The group with SA showed significantly increased AHI values > 15 (p = 0.0032), total breath holding episodes (p = 0.007), and average SpO2 (p = 0.0001) as well as lower nadir SpO2 (p = 0.0004) compared with the patients with WAs. The subgroups of patients with WA and SA showed no significant differences in arterial blood gas analysis variables (p > 0.089). Decreased mean cell hemoglobin (MCH) (p = 0.038) was observed in the group with WAs. P-NPBI levels were significantly higher in the group with WA than in that with SAs (p = 0.0001). Stepwise multiple linear regression models showed WA being related to nadir SpO2, average SpO2, and P-NPBI (adjusted R 2 = 0.613, multiple correlation coefficient = 0.795 p < 0.0001), and P-NPBI being related to average SpO2, blood PaCO2, red blood cell mean corpuscular volume (MCV), age, and topiramate treatment (adjusted R 2 = 0.551, multiple correlation coefficient = 0.765, p < 0.0001). Conclusion: Our findings indicate that the impact of apneas in RTT is uneven according to the sleep-wakefulness cycle, and that plasma redox active iron represents a potential novel therapeutic target.

4.
Life (Basel) ; 12(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35207434

RESUMEN

Cerebral adrenoleukodystrophy (ALD) is a rare neuroinflammatory disorder characterized by progressive demyelination. Mutations within the ABCD1 gene result in very long-chain fatty acid (VLCFA) accumulation within the peroxisome, particularly in the brain. While this VLCFA accumulation is known to be the driving cause of the disease, oxidative stress can be a contributing factor. For patients with early cerebral disease, allogeneic hematopoietic stem cell transplantation (HSCT) is the standard of care, and this can be supported by antioxidants. To evaluate the involvement of fatty acid oxidation in the disease, F2-isoprostanes (F2-IsoPs), F2-dihomo-isoprostanes (F2-dihomo-IsoPs) and F4-neuroprostanes (F4-NeuroPs)-which are oxygenated metabolites of arachidonic (ARA), adrenic (AdA) and docosahexaenoic (DHA) acids, respectively-in plasma samples from ALD subjects (n = 20)-with various phenotypes of the disease-were measured. Three ALD groups were classified according to patients with: (1) confirmed diagnosis of ALD but without cerebral disease; (2) cerebral disease in early period post-HSCT (<100 days post-HSCT) and on intravenous N-acetyl-L-cysteine (NAC) treatment; (3) cerebral disease in late period post-HSCT (beyond 100 days post-HSCT) and off NAC therapy. In our observation, when compared to healthy subjects (n = 29), in ALD (i), F2-IsoPs levels were significantly (p < 0.01) increased in all patients, with the single exception of the early ALD and on NAC subjects; (ii) significant elevated (p < 0.0001) amounts of F2-dihomo-IsoPs were detected, with the exception of patients with a lack of cerebral disease; (iii), a significant increase (p < 0.003) in F4-NeuroP plasma levels was detected in all ALD patients. Moreover, F2-IsoPs plasma levels were significantly higher (p = 0.038) in early ALD in comparison to late ALD stage, and F4-NeuroPs were significantly lower (p = 0.012) in ALD subjects with a lack of cerebral disease in comparison to the late disease stage. Remarkably, plasma amounts of all investigated isoprostanoids were shown to discriminate ALD patients vs. healthy subjects. Altogether, isoprostanoids are relevant to the phenotype of X-ALD and may be helpful in predicting the presence of cerebral disease and establishing the risk of progression.

5.
Life (Basel) ; 11(7)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34357027

RESUMEN

F4-neuroprostanes (F4-NeuroPs), derived from the oxidative metabolization of docosahexaenoic acid (DHA), are considered biomarkers of oxidative stress in neurodegenerative diseases. Neurons and spermatozoa display a high DHA content. NeuroPs might possess biological activities. The aim of this in vitro study was to investigate the biological effects of chemically synthetized 4-F4t-NeuroP and 10-F4t-NeuroP in human sperm. Total progressive sperm motility (p < 0.05) and linearity (p = 0.016), evaluated by a computer-assisted sperm analyzer, were significantly increased in samples incubated with 7 ng F4-NeuroPs compared to non-supplemented controls. Sperm capacitation was tested in rabbit and swim-up-selected human sperm by chlortetracycline fluorescence assay. A higher percentage of capacitated sperm (p < 0.01) was observed in samples incubated in F4-NeuroPs than in the controls. However, the percentage of capacitated sperm was not different in F4-NeuroPs and calcium ionophore treatments at 2 h incubation. The phosphorylated form of AMPKα was detected by immunofluorescence analysis; after 2 h F4-NeuroP incubation, a dotted signal appeared in the entire sperm tail, and in controls, sperm were labeled in the mid-piece. A defined level of seminal F4-NeuroPs (7 ng) showed a biological activity in sperm function; its addition in sperm suspensions stimulated capacitation, increasing the number of sperm able to fertilize.

6.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921863

RESUMEN

Neuroprostanes, a family of non-enzymatic metabolites of the docosahexaenoic acid, have been suggested as potential biomarkers for neurological diseases. Objective biological markers are strongly needed in Rett syndrome (RTT), which is a progressive X-linked neurodevelopmental disorder that is mainly caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene with a predominant multisystemic phenotype. The aim of the study is to assess a possible association between MECP2 mutations or RTT disease progression and plasma levels of 4(RS)-4-F4t-neuroprostane (4-F4t-NeuroP) and 10(RS)-10-F4t-neuroprostane (10-F4t-NeuroP) in typical RTT patients with proven MECP2 gene mutation. Clinical severity and disease progression were assessed using the Rett clinical severity scale (RCSS) in n = 77 RTT patients. The 4-F4t-NeuroP and 10-F4t-NeuroP molecules were totally synthesized and used to identify the contents of the plasma of the patients. Neuroprostane levels were related to MECP2 mutation category (i.e., early truncating, gene deletion, late truncating, and missense), specific hotspot mutations (i.e., R106W, R133C, R168X, R255X, R270X, R294X, R306C, and T158M), and disease stage (II through IV). Circulating 4-F4t-NeuroP and 10-F4t-NeuroP were significantly related to (i) the type of MECP2 mutations where higher levels were associated to gene deletions (p ≤ 0.001); (ii) severity of common hotspot MECP2 mutation (large deletions, R168X, R255X, and R270X); (iii) disease stage, where higher concentrations were observed at stage II (p ≤ 0.002); and (iv) deficiency in walking (p ≤ 0.0003). This study indicates the biological significance of 4-F4t-NeuroP and 10-F4t-NeuroP as promising molecules to mark the disease progression and potentially gauge genotype-phenotype associations in RTT.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Neuroprostanos/sangre , Síndrome de Rett/sangre , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Enfermedades del Sistema Nervioso/sangre , Enfermedades del Sistema Nervioso/genética , Síndrome de Rett/genética , Síndrome de Rett/patología , Adulto Joven
7.
Antioxidants (Basel) ; 10(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925444

RESUMEN

Polyunsaturated fatty acid (PUFA) metabolism and tissue distribution is modulated by the oxidation of these molecules. This research aimed to investigate the implication of dietary n-3 PUFA supplementation (precursor and long-chain PUFA) on the PUFA profile and oxidative status of the liver, testis, and brain of adult rabbit bucks. Twenty New Zealand White rabbit bucks were divided into four experimental groups (n = 5 per group) and were fed different diets for 110 days: control (CNT), standard diet containing 50 mg/kg alpha-tocopheryl acetate (vitamin E); CNT+, standard diet + 200 mg/kg vitamin E; FLAX, standard diet + 10% flaxseed + 200 mg/kg vitamin E; or FISH, standard diet + 3.5% fish oil + 200 mg/kg vitamin E. Antioxidants (enzymatic and non-enzymatic), oxidative status (malondialdehyde and isoprostanoids), and n-3 and n-6 PUFAs of tissues were analysed. A chain mechanism of oxidant/antioxidant molecules, which largely depended on the particular PUFA composition, was delineated in the different organs. The liver showed an oxidant/antioxidant profile and lipid pathways widely modulated by PUFA and vitamin E administration; on the other hand, the testis' oxidative profile rather than its lipid profile seemed to be particularly affected, an outcome opposite to that of the brain (modulation operated by dietary PUFA).

8.
MAGMA ; 34(3): 451-467, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32785807

RESUMEN

OBJECTIVE: A method for Orthogonal Phase Encoding Reduction of Artifact (OPERA) was developed and tested. MATERIALS AND METHODS: Because the position of ghosts and aliasing artifacts is predictable along columns or rows, OPERA combines the intensity values of two images acquired using the same parameters, but with swapped phase-encoding directions, to correct the artifacts. Simulations and phantom experiments were conducted to define the efficacy, robustness, and reproducibility. Clinical validation was performed on a total of 1003 images by comparing the OPERA-corrected images and the corresponding image standard in terms of Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR). The method efficacy was also rated using a Likert-type scale response by two experienced independent radiologists using a single-blinded procedure. RESULTS: Simulations and phantom experiments demonstrated the robustness and effectiveness of OPERA in reducing artifacts strength. OPERA application did not significantly change the SNR [+ 4.16%; inter-quartile range (IQR): 2.72-5.01%] and CNR (+ 4.30%; IQR: 2.86-6.04%) values. The two radiologists observed a total of 893 original images with artifacts (89.03% of the total images), a reduction in the perceived artifacts of 82.0% and 83.9% (p < 0.0001), and an improvement in the perceived SNR (82.8% and 88.5%; K = 0.714) and perceived CNR (86.9-88.9%; K = 0.722). DISCUSSION: The study demonstrated that OPERA reduces MR artifacts and improves the perceived image quality.


Asunto(s)
Artefactos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido
9.
J Neurodev Disord ; 12(1): 26, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32988385

RESUMEN

BACKGROUND: Rett syndrome (RTT), an X-linked neurodevelopmental rare disease mainly caused by MECP2-gene mutations, is a prototypic intellectual disability disorder. Reversibility of RTT-like phenotypes in an adult mouse model lacking the Mecp2-gene has given hope of treating the disease at any age. However, adult RTT patients still urge for new treatments. Given the relationship between RTT and monoamine deficiency, we investigated mirtazapine (MTZ), a noradrenergic and specific-serotonergic antidepressant, as a potential treatment. METHODS: Adult heterozygous-Mecp2 (HET) female mice (6-months old) were treated for 30 days with 10 mg/kg MTZ and assessed for general health, motor skills, motor learning, and anxiety. Motor cortex, somatosensory cortex, and amygdala were analyzed for parvalbumin expression. Eighty RTT adult female patients harboring a pathogenic MECP2 mutation were randomly assigned to treatment to MTZ for insomnia and mood disorders (mean age = 23.1 ± 7.5 years, range = 16-47 years; mean MTZ-treatment duration = 1.64 ± 1.0 years, range = 0.08-5.0 years). Rett clinical severity scale (RCSS) and motor behavior assessment scale (MBAS) were retrospectively analyzed. RESULTS: In HET mice, MTZ preserved motor learning from deterioration and normalized parvalbumin levels in the primary motor cortex. Moreover, MTZ rescued the aberrant open-arm preference behavior observed in HET mice in the elevated plus-maze (EPM) and normalized parvalbumin expression in the barrel cortex. Since whisker clipping also abolished the EPM-related phenotype, we propose it is due to sensory hypersensitivity. In patients, MTZ slowed disease progression or induced significant improvements for 10/16 MBAS-items of the M1 social behavior area: 4/7 items of the M2 oro-facial/respiratory area and 8/14 items of the M3 motor/physical signs area. CONCLUSIONS: This study provides the first evidence that long-term treatment of adult female heterozygous Mecp2tm1.1Bird mice and adult Rett patients with the antidepressant mirtazapine is well tolerated and that it protects from disease progression and improves motor, sensory, and behavioral symptoms.


Asunto(s)
Síndrome de Rett , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Mirtazapina , Estudios Retrospectivos , Síndrome de Rett/genética
10.
Biochim Biophys Acta Mol Basis Dis ; 1866(7): 165793, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32275946

RESUMEN

Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. The molecular mechanisms underscoring the phenotypic alteration of RTT are largely unknown and this has impaired the development of therapeutic approaches to alleviate signs and symptoms during disease progression. A defective proteasome biogenesis into two skin primary fibroblasts isolated from RTT subjects harbouring non-sense (early-truncating) MeCP2 mutations (i.e., R190fs and R255X) is herewith reported. Proteasome is the proteolytic machinery of Ubiquitin Proteasome System (UPS), a pathway of overwhelming relevance for post-mitotic cells metabolism. Molecular, transcription and proteomic analyses indicate that MeCP2 mutations down-regulate the expression of one proteasome subunit, α7, and of two chaperones, PAC1 and PAC2, which bind each other in the earliest step of proteasome biogenesis. Furthermore, this molecular alteration recapitulates in neuron-like SH-SY5Y cells upon silencing of MeCP2 expression, envisaging a general significance of this transcription regulator in proteasome biogenesis.


Asunto(s)
Fosfatasa 2 de Especificidad Dual/genética , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Codón sin Sentido/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Síndrome de Rett/patología , Piel/metabolismo , Piel/patología , Ubiquitina/genética
11.
J Proteomics ; 210: 103537, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31629059

RESUMEN

Rett syndrome (RTT) is a leading cause of severe intellectual disability in females, caused by de novo loss-of function mutations in the X-linked methyl-CpG binding protein 2 (MECP2). To better investigate RTT disease progression/pathogenesis animal models of Mecp2 deficiency have been developed. Here, Mecp2 mouse models are employed to investigate the role of protein patterns in RTT. A proteome analysis was carried out in brain tissue from i) Mecp2 deficient mice at the pre-symptomatic and symptomatic stages and, ii) mice in which the disease phenotype was reversed by Mecp2 reactivation. Several proteins were shown to be differentially expressed in the pre-symptomatic (n = 18) and symptomatic (n = 20) mice. Mecp2 brain reactivated mice showed wild-type comparable levels of expression for twelve proteins, mainly related to proteostasis (n = 4) and energy metabolic pathways (n = 4). The remaining ones were found to be involved in redox homeostasis (n = 2), nitric oxide regulation (n = 1), neurodevelopment (n = 1). Ten out of twelve proteins were newly linked to Mecp2 deficiency. Our study sheds light on the relevance of the protein-regulation of main physiological process in the complex mechanisms leading from Mecp2 mutation to the RTT clinical phenotype. SIGNIFICANCE: We performed a proteomic study of a Mecp2stop/y mouse model for Rett syndrome (RTT) at the pre-symptomatic and symptomatic Mecp2 deficient mice stage and for the brain specific reactivated Mecp2 model. Our results reveal major protein expression changes pointing out to defects in proteostasis or energy metabolic pathways other than, to a lesser extent, in redox homeostasis, nitric oxide regulation or neurodevelopment. The Mecp2 mouse rescued model provides the possibility to select target proteins more susceptible to the Mecp2 gene mutation, potential and promising therapeutical targets.


Asunto(s)
Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/fisiología , Mutación , Estrés Oxidativo , Proteoma/metabolismo , Síndrome de Rett/etiología , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteoma/análisis , Proteómica/métodos , Síndrome de Rett/patología
12.
Free Radic Biol Med ; 139: 46-54, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31100476

RESUMEN

Krabbe disease (KD) is a rare and devastating pediatric leukodystrophy caused by mutations in the galactocerebrosidase (GALC) gene. The disease leads to impaired myelin formation and extensive myelin damage in the brain. Oxidative stress is implicated in the pathogenesis of KD but insofar few information is available. The gray and white matter of the brain are rich in docosahexaenoic acid and adrenic acid respectively and under non-enzymatic oxidative stress, release isoprostanoids, i.e. F4-neuroprostanes (F4-NeuroPs) and F2-dihomo-isoprostanes (F2-dihomo-IsoPs). In this study, the formation of isoprostanoids in brain tissue was investigated in a well-established KD mouse model (twitcher) that recapitulates the human pathology. According to the genotype determinations, three groups of mice were selected: wild-type control mice (n = 13), heterozygotes mice (carriers of GALC mutations, n = 14) and homozygous twitcher mice (n = 13). Measurement of F2-dihomo-IsoP and F4-NeuroP levels were performed on whole brain tissue obtained at day 15 and day 35 of the life cycle. Brain isoprostanoid levels were significantly higher in the twitcher mice compared to the heterozygous and wild-type control mice. However, F2-dihomo-IsoP and F4-NeuroP levels did not differ in brain of day 15 compared to day 35 of the heterozygote mice. Interestingly, isoprostanoid levels were proportionally enhanced with disease severity (F2-dihomo-IsoPs, rho = 0.54; F4-NeuroPs, rho = 0.581; P values ≤ 0.05; n = 13). Our findings are the first to show the key role of polyunsaturated fatty acid oxidative damage to brain grey and white matter in the pathogenesis and progression of KD. This shed new insights on the biochemical indexes of KD progression, and potentially provide information for novel therapeutic targets.


Asunto(s)
Galactosilceramidasa/genética , Sustancia Gris/metabolismo , Isoprostanos/metabolismo , Leucodistrofia de Células Globoides/metabolismo , Neuroprostanos/metabolismo , Sustancia Blanca/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Galactosilceramidasa/deficiencia , Expresión Génica , Sustancia Gris/patología , Heterocigoto , Homocigoto , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Ratones , Mutación , Estrés Oxidativo , Índice de Severidad de la Enfermedad , Sustancia Blanca/patología
13.
Oxid Med Cell Longev ; 2019: 3279670, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32082475

RESUMEN

In the last two decades, the human sperm count linearly decreased in Western countries. Health problems, lifestyle, pollutants, and dietary behaviours are considered as the main risk factors, and the unbalance of dietary n-6/n-3 fatty acids is one of the most relevant. The aim of the present research is to study the effect of different dietary sources of n-3 polyunsaturated fatty acids (PUFA) on reproductive traits using rabbit buck as the animal model. Fifteen rabbit bucks were assigned to three experimental groups: the control group, the FLAX group fed 10% extruded flaxseed, and the FISH group fed 3.5% fish oil for 110 days (50-day adaptation and 60-day experimental periods). Semen samples were collected weekly, whereas blood was collected every two weeks for the analytical determination of semen traits, oxidative status, fatty acid profiles, isoprostanes, neuroprostanes, and the immunocytochemistry of docosahexaenoic acid (DHA) and eicosapentaenoic (EPA) acid. At the end of the trial, the rabbits were killed and the testes were removed and stored for the analysis of fatty acid profile and immunocytochemistry. Results showed that dietary administration of n-3 PUFA improved the track speed of the sperm and increased the n-3 long-chain PUFA mainly confined in the sperm tail. Seminal plasma increased the thiobarbituric reactive substances (TBARs) by three times in the groups fed supplemental n-3, whereas the F2-isoprotanes (F2-IsoPs) and F4-neuroprostanes (F4-NeuroPs) were lower and higher, respectively, in both supplemented groups than in the control. The testes and sperm showed a higher DHA and EPA distribution in rabbits from the n-3 supplemented groups compared with the control. In conclusion, supplemental dietary n-3 PUFA improved sperm motion traits and resulted in an enrichment of membrane fatty acid in the sperm and testes of the rabbits. However, such an increased amount of PUFA negatively affected the sperm oxidative status, which was mainly correlated with the generation of F4-NeuroPs with respect to F2-IsoPs. Accordingly, the latter cannot be considered a good marker of oxidation when diets rich in n-3 PUFA are provided.


Asunto(s)
Ácidos Grasos Omega-3/administración & dosificación , Infertilidad Masculina/dietoterapia , Reproducción/fisiología , Semen/fisiología , Animales , Dieta , Suplementos Dietéticos , Ácidos Docosahexaenoicos , Aceites de Pescado/administración & dosificación , Lino , Humanos , Masculino , Conejos , Recuento de Espermatozoides , Motilidad Espermática
14.
Antioxidants (Basel) ; 7(7)2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29997375

RESUMEN

Isoprostanoids are a large family of compounds derived from non-enzymatic oxidation of polyunsaturated fatty acids (PUFAs). Unlike other oxidative stress biomarkers, they provide unique information on the precursor of the targeted PUFA. Although they were discovered about a quarter of century ago, the knowledge on the role of key isoprostanoids in the pathogenesis of experimental and human disease models remains limited. This is mainly due to the limited availability of highly purified molecules to be used as a reference standard in the identification of biological samples. The accurate knowledge on their biological relevance is the critical step that could be translated from some mere technical/industrial advances into a reliable biological disease marker which is helpful in deciphering the oxidative stress puzzle related to neurological disorders. Recent research indicates the value of isoprostanoids in predicting the clinical presentation and evolution of the neurological diseases. This review focuses on the relevance of isoprostanoids as mediators and potential biomarkers in neurological diseases, a heterogeneous family ranging from rare brain diseases to major health conditions that could have worldwide socioeconomic impact in the health sector. The current challenge is to identify the preferential biochemical pathways that actually follow the oxidative reactions in the neurological diseases and the consequence of the specific isoprostanes in the underlying pathogenic mechanisms.

15.
BMC Gastroenterol ; 18(1): 57, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720131

RESUMEN

BACKGROUND: Rett syndrome (RTT) is a neurological disorder mainly caused by mutations in MeCP2 gene. It has been shown that MeCP2 impairments can lead to cytokine dysregulation due to MeCP2 regulatory role in T-helper and T-reg mediated responses, thus contributing to the pro-inflammatory status associated with RTT. Furthermore, RTT subjects suffer from an intestinal dysbiosis characterized by an abnormal expansion of the Candida population, a known factor responsible for the hyper-activation of pro-inflammatory immune responses. Therefore, we asked whether the intestinal fungal population of RTT subjects might contribute the sub-inflammatory status triggered by MeCP2 deficiency. METHODS: We evaluated the cultivable gut mycobiota from a cohort of 50 RTT patients and 29 healthy controls characterizing the faecal fungal isolates for their virulence-related traits, antifungal resistance and immune reactivity in order to elucidate the role of fungi in RTT's intestinal dysbiosis and gastrointestinal physiology. RESULTS: Candida parapsilosis, the most abundant yeast species in RTT subjects, showed distinct genotypic profiles if compared to healthy controls' isolates as measured by hierarchical clustering analysis from RAPD genotyping. Their phenotypical analysis revealed that RTT's isolates produced more biofilm and were significantly more resistant to azole antifungals compared to the isolates from the healthy controls. In addition, the high levels of IL-1ß and IL-10 produced by peripheral blood mononuclear cells and the mixed Th1/Th17 cells population induced by RTT C. parapsilosis isolates suggest the capacity of these intestinal fungi to persist within the host, being potentially involved in chronic, pro-inflammatory responses. CONCLUSIONS: Here we demonstrated that intestinal C. parapsilosis isolates from RTT subjects hold phenotypic traits that might favour the previously observed low-grade intestinal inflammatory status associated with RTT. Therefore, the presence of putative virulent, pro-inflammatory C. parapsilosis strains in RTT could represent an additional factor in RTT's gastrointestinal pathophysiology, whose mechanisms are not yet clearly understood.


Asunto(s)
Candida parapsilosis/aislamiento & purificación , Candida parapsilosis/patogenicidad , Candidiasis/microbiología , Gastroenteritis/microbiología , Síndrome de Rett/microbiología , Antifúngicos/uso terapéutico , Candida albicans/genética , Candida albicans/aislamiento & purificación , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Candidiasis/tratamiento farmacológico , Candidiasis/inmunología , Citocinas/sangre , Farmacorresistencia Fúngica , Gastroenteritis/tratamiento farmacológico , Gastroenteritis/inmunología , Microbioma Gastrointestinal , Variación Genética , Genotipo , Humanos , Interleucina-10/sangre , Leucocitos Mononucleares/metabolismo , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Mutación , Síndrome de Rett/genética , Síndrome de Rett/inmunología , Virulencia
16.
Cancer Biomark ; 22(2): 179-198, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29689703

RESUMEN

Cancer is the most important cause of death worldwide, and early cancer detection is the most fundamental factor for efficacy of treatment, prognosis, and increasing survival rate. Over the years great effort has been devoted to discovering and testing new biomarkers that can improve its diagnosis, especially at an early stage. Here we report the potential usefulness of new, easily applicable, non-invasive and relatively low-cost clinical biomarkers, based on abnormalities of oral mucosa spectral reflectance and fractal geometry of the vascular networks in several different tissues, for identification of hereditary non-polyposis colorectal cancer carriers as well for detection of other tumors, even at an early stage. In the near future the methodology/technology of these procedures should be improved, thus making possible their applicability worldwide as screening tools for early recognition and prevention of cancer.


Asunto(s)
Biomarcadores , Neoplasias/diagnóstico , Neoplasias/prevención & control , Diagnóstico por Imagen/métodos , Genómica/métodos , Humanos , Metabolómica/métodos , Neoplasias/etiología , Neoplasias/metabolismo , Proteómica/métodos , Sensibilidad y Especificidad
17.
Free Radic Biol Med ; 115: 278-287, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29233794

RESUMEN

F4-neuroprostanes (F4-NeuroPs) are non-enzymatic oxidized products derived from docosahexaenoic acid (DHA) and are suggested to be oxidative damage biomarkers of neurological diseases. However, 128 isomers can be formed from DHA oxidation and among them, 4(RS)-4-F4t-NeuroP (4-F4t-NeuroP) and 10(RS)-10-F4t-NeuroP (10-F4t-NeuroP) are the most studied. Here, we report the identification and the clinical relevance of 4-F4t-NeuroP and 10-F4t-NeuroP in plasma of four different neurological diseases, including multiple sclerosis (MS), autism spectrum disorders (ASD), Rett syndrome (RTT), and Down syndrome (DS). The identification and the optimization of the method were carried out by gas chromatography/negative-ion chemical ionization tandem mass spectrometry (GC/NICI-MS/MS) using chemically synthesized 4-F4t-NeuroP and 10-F4t-NeuroP standards and in oxidized DHA liposome. Both 4-F4t-NeuroP and 10-F4t-NeuroP were detectable in all plasma samples from MS (n = 16), DS (n = 16), ASD (n = 9) and RTT (n = 20) patients. While plasma 10-F4t-NeuroP content was significantly higher in patients of all diseases as compared to age and gender matched healthy control subjects (n = 61), 4-F4t-NeuroP levels were significantly higher in MS and RTT as compared to healthy controls. Significant positive relationships were observed between relative disease severity and 4-F4t-NeuroP levels (r = 0.469, P <0.0001), and 10-F4t-NeuroP levels (r = 0.757, P < 0.0001). The study showed that the plasma amount ratio of 10-F4t-NeuroP to 4-F4t-NeuroP and the plasma amount as individual isomer can be used to discriminate between different brain diseases. Overall, by comparing the different types of disease, our plasma data indicates that 4-F4t-NeuroP and 10-F4t -NeuroP: i) are biologically synthesized in vivo and circulated, ii) are related to clinical severity of neurological diseases, iii) are useful to identify shared pathogenetic pathways in distinct brain diseases, and iv) appears to be distinctive for different neurological conditions, thus representing potentially new biological disease markers. Our data strongly suggest that in vivo DHA oxidation follows preferential chemical rearrangements according to different brain diseases.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Síndrome de Down/metabolismo , Esclerosis Múltiple/metabolismo , Neuroprostanos/sangre , Síndrome de Rett/metabolismo , Adolescente , Adulto , Trastorno del Espectro Autista/diagnóstico , Biomarcadores/sangre , Niño , Preescolar , Diagnóstico Diferencial , Ácidos Docosahexaenoicos/metabolismo , Síndrome de Down/diagnóstico , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico , Oxidación-Reducción , Síndrome de Rett/diagnóstico , Espectrometría de Masas en Tándem , Adulto Joven
18.
Ann Otol Rhinol Laryngol ; 126(9): 640-645, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28766954

RESUMEN

OBJECTIVES: Rett syndrome (RS) is a neurodevelopmental disorder and the second major cause of mental retardation in females. The aim of this study was to evaluate swallowing problems of RS patients by endoscopic assessment and compile a list of suggestions for managing feeding and preventing complications. METHODS: The sample consisted of 61 female patients (mean age = 13.6 years, range, 2-33 years) admitted to the Department of Neuropsychiatry, where they had previously been diagnosed with RS. Speech evaluation associated with observation during mealtimes was useful to formulate suggestions for caregivers. RESULTS: Progressive deterioration of feeding was commonly noted by caregivers. Fifty-four patients had a history of recurrent episodes of bronchitis. Oral apraxia, dyskinetic tongue movements, prolonged oral stage, and poor bolus formation were the most common findings in all patients. CONCLUSIONS: Dysphagia was primarily limited to oral preparatory phases, while the pharyngeal phase was normal in most patients. The high percentage of dysphagia suggests the need to accurately monitor the feeding capability of RS children. It is critical to correctly inform caregivers about safe swallowing procedures to reduce the incidence of fatal complications.


Asunto(s)
Apraxias/fisiopatología , Trastornos de Deglución/fisiopatología , Discinesias/fisiopatología , Síndrome de Rett/fisiopatología , Lengua/fisiopatología , Adolescente , Adulto , Apraxias/complicaciones , Niño , Preescolar , Deglución , Trastornos de Deglución/etiología , Discinesias/complicaciones , Femenino , Humanos , Faringe/fisiopatología , Síndrome de Rett/complicaciones , Adulto Joven
19.
Mediators Inflamm ; 2017: 9467819, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28592917

RESUMEN

Rett syndrome (RTT) is a rare neurodevelopmental disorder usually caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). Several Mecp2 mutant mouse lines have been developed recapitulating part of the clinical features. In particular, Mecp2-308 female heterozygous mice, bearing a truncating mutation, are a validated model of the disease. While recent data suggest a role for inflammation in RTT, little information on the inflammatory status in murine models of the disease is available. Here, we investigated the inflammatory status by proteomic 2-DE/MALDI-ToF/ToF analyses in symptomatic Mecp2-308 female mice. Ten differentially expressed proteins were evidenced in the Mecp2-308 mutated plasma proteome. In particular, 5 positive acute-phase response (APR) proteins increased (i.e., kininogen-1, alpha-fetoprotein, mannose-binding protein C, alpha-1-antitrypsin, and alpha-2-macroglobulin), and 3 negative APR reactants were decreased (i.e., serotransferrin, albumin, and apolipoprotein A1). CD5 antigen-like and vitamin D-binding protein, two proteins strictly related to inflammation, were also changed. These results indicate for the first time a persistent unresolved inflammation of unknown origin in the Mecp2-308 mouse model.


Asunto(s)
Inflamación/inmunología , Inflamación/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/inmunología , Síndrome de Rett/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Proteómica
20.
Microbiome ; 5(1): 24, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28222761

RESUMEN

BACKGROUND: Autism spectrum disorders (ASDs) are neurodevelopmental conditions characterized by social and behavioural impairments. In addition to neurological symptoms, ASD subjects frequently suffer from gastrointestinal abnormalities, thus implying a role of the gut microbiota in ASD gastrointestinal pathophysiology. RESULTS: Here, we characterized the bacterial and fungal gut microbiota in a cohort of autistic individuals demonstrating the presence of an altered microbial community structure. A fraction of 90% of the autistic subjects were classified as severe ASDs. We found a significant increase in the Firmicutes/Bacteroidetes ratio in autistic subjects due to a reduction of the Bacteroidetes relative abundance. At the genus level, we observed a decrease in the relative abundance of Alistipes, Bilophila, Dialister, Parabacteroides, and Veillonella in the ASD cohort, while Collinsella, Corynebacterium, Dorea, and Lactobacillus were significantly increased. Constipation has been then associated with different bacterial patterns in autistic and neurotypical subjects, with constipated autistic individuals characterized by high levels of bacterial taxa belonging to Escherichia/Shigella and Clostridium cluster XVIII. We also observed that the relative abundance of the fungal genus Candida was more than double in the autistic than neurotypical subjects, yet due to a larger dispersion of values, this difference was only partially significant. CONCLUSIONS: The finding that, besides the bacterial gut microbiota, also the gut mycobiota contributes to the alteration of the intestinal microbial community structure in ASDs opens the possibility for new potential intervention strategies aimed at the relief of gastrointestinal symptoms in ASDs.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Heces/microbiología , Microbioma Gastrointestinal , Tracto Gastrointestinal/fisiopatología , Adolescente , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/etiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Niño , Preescolar , Clostridium/genética , Clostridium/aislamiento & purificación , Estreñimiento , Femenino , Firmicutes/genética , Firmicutes/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Enfermedades Gastrointestinales/microbiología , Tracto Gastrointestinal/microbiología , Humanos , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Masculino , Micobioma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...