RESUMEN
Asynchronous embryo transfer (ET) is a common assisted reproduction technique used in several species, but its biological effects on postnatal and early development remain unknown. The aim of this study was to determine whether asynchronous ET produces long-term effects in mice. Postnatal development, animal weight, systolic blood pressure (SBP), relative organ weight (liver, spleen, kidneys, heart, lungs, brain, and testicles), and behavior (assessed in open-field and elevated plus maze tests) were assessed in CD1 mice produced by different ET procedures: 1) the transfer of Day 3.5 (D3.5) blastocysts to the uterus (BL-UT); 2) the transfer of D3.5 blastocysts to the oviduct (BL-OV); or 3) the transfer of D0.5 zygotes to the oviduct (Z-OV). In vivo conceived animals served as controls (CT). The transfer of blastocysts to the uterus or zygotes to the oviduct was defined as synchronous, and transfer of blastocysts to the oviduct was defined as asynchronous. Both synchronous and asynchronous ET resulted in increased weight at birth that normalized thereafter with the exception of asynchronous ET females. In this group, female BL-OV, a clear lower body weight was recorded along postnatal life when compared with controls (P < 0.05). No effects on animal weight were produced during postnatal development in the synchronous ET groups (BL-UT, Z-OV, and CT). Both synchronous and asynchronous ET had impacts on adult (Wk 30) organ weight. SBP was modified in animals derived from blastocyst but not zygote ET. Effects on behavior (anxiety in the plus maze) were only detected in the BL-UT group (P < 0.05). Our findings indicate that zygotes are less sensitive than blastocysts to ET and that both synchronous and asynchronous blastocyst ET may have long-term consequences on health, with possible impacts on weight, arterial pressure, relative organ weight, and behavior.
Asunto(s)
Conducta Animal/fisiología , Transferencia de Embrión/métodos , Crecimiento/fisiología , Animales , Animales Recién Nacidos , Ansiedad , Blastocisto/fisiología , Presión Sanguínea/fisiología , Peso Corporal/fisiología , Técnicas de Cultivo de Embriones , Trompas Uterinas , Femenino , Estado de Salud , Masculino , Ratones , Actividad Motora/fisiología , Tamaño de los Órganos/fisiología , Embarazo , Caracteres Sexuales , Cigoto/fisiologíaRESUMEN
Perinatal asphyxia (PA) increases the likelihood of suffering from dopamine-related disorders, such as ADHD and schizophrenia. Since dopaminergic transmission plays a major role in cocaine sensitization, the purpose of this study was to determine whether PA could be associated with altered behavioral sensitization to cocaine. To this end, adult rats born vaginally (CTL), by caesarean section (C+), or by C+ with 15 min (PA15, moderate PA) or 19 min (PA19, severe PA) of global anoxia were repeatedly administered with cocaine (i.p., 15 mg/kg) and then challenged with cocaine (i.p., 15 mg/kg) after a 5-day withdrawal period. In addition, c-Fos, FosB/ΔFosB, DAT, and TH expression were assessed in dorsal (CPu) and ventral (NAcc) striatum. Results indicated that PA15 rats exhibited an increased locomotor sensitization to cocaine, while PA19 rats displayed an abnormal acquisition of locomotor sensitization and did not express a sensitized response to cocaine. c-Fos expression in NAcc, but not in CPu, was associated with these alterations in cocaine sensitization. FosB/ΔFosB expression was increased in all groups and regions after repeated cocaine administration, although it reached lower expression levels in PA19 rats. In CTL, C+, and PA15, but not in PA19 rats, the expression of TH in NAcc was reduced in groups repeatedly treated with cocaine, independently of the challenge test. Furthermore, this reduction was more pronounced in PA15 rats. DAT expression remained unaltered in all groups and regions studied. These results suggest that moderate PA may increase the vulnerability to drug abuse and in particular to cocaine addiction.
Asunto(s)
Asfixia Neonatal/complicaciones , Sensibilización del Sistema Nervioso Central , Trastornos Relacionados con Cocaína/etiología , Cocaína/farmacología , Animales , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/fisiopatología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Locomoción , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Putamen/efectos de los fármacos , Putamen/metabolismo , Ratas , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.