Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 24(6): 950-959, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35596640

RESUMEN

The climate is changing rapidly, provoking species to shift their ranges poleward and upslope. We currently lack a mechanistic understanding of the effect of warmer temperatures on plants, especially for seasonally distinct patterns. Spring geophytes are emblematic forest plants that have a short aboveground lifecycle in the first half of the year and are thus particularly sensitive to winter and spring warming. We set up a warming experiment with separate and combined winter and spring warming on seedlings of three European spring geophytes: Anemone nemorosa, Hyacinthoides non-scripta and Ornithogalum pyrenaicum. Seedling emergence and plant height were recorded at the end of winter and spring treatment, when also biomass of the root, shoot and storage organ was determined. We found negative effects of combined winter and spring warming on seedling emergence. The weight of the storage organ proved to be the best indicator of seedling performance and was negatively affected by separate winter warming in Anemone and by spring warming in Hyacinthoides. Successful seedling emergence was jeopardized by the absence of a cold period, while seedling performance seemed to be negatively influenced directly by higher temperatures through a phenological shift. Our findings confirm that warmer winter and spring temperatures could hamper regeneration of spring geophytes.


Asunto(s)
Clima , Bosques , Cambio Climático , Plantas , Estaciones del Año , Plantones , Temperatura
2.
Plant Biol (Stuttg) ; 24(5): 745-757, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35373433

RESUMEN

Quercus spp. are one of the most important tree genera in temperate deciduous forests in terms of biodiversity, economic and cultural perspectives. However, natural regeneration of oaks, depending on specific environmental conditions, is still not sufficiently understood. Oak regeneration dynamics are impacted by climate change, but these climate impacts will depend on local forest management and light and temperature conditions. Here, we studied germination, survival and seedling performance (i.e. aboveground biomass, height, root collar diameter and specific leaf area) of four oak species (Q. cerris, Q. ilex, Q. robur and Q. petraea). Acorns were sown across a wide latitudinal gradient, from Italy to Sweden, and across several microclimatic gradients located within and beyond the species' natural ranges. Microclimatic gradients were applied in terms of forest structure, distance to the forest edge and experimental warming. We found strong interactions between species and latitude, as well as between microclimate and latitude or species. The species thus reacted differently to local and regional changes in light and temperature ; in southern regions the temperate Q. robur and Q. petraea performed best in plots with a complex structure, whereas the Mediterranean Q. ilex and Q. cerris performed better in simply structured forests with a reduced microclimatic buffering capacity. The experimental warming treatment only enhanced height and aboveground biomass of Mediterranean species. Our results show that local microclimatic gradients play a key role in the initial stages of oak regeneration; however, one needs to consider the species-specific responses to forest structure and the macroclimatic context.


Asunto(s)
Quercus , Cambio Climático , Bosques , Microclima , Quercus/fisiología , Árboles
3.
Plant Biol (Stuttg) ; 24(5): 734-744, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35322913

RESUMEN

The effectiveness of hedgerows as functional corridors in the face of climate warming has been little researched. Here we investigated the effects of warming temperatures on plant performance and population growth of Geum urbanum in forests versus hedgerows in two European temperate regions. Adult individuals were transplanted in three forest-hedgerow pairs in each of two different latitudes, and an experimental warming treatment using open-top chambers was used in a full factorial design. Plant performance was analysed using mixed models and population performance was analysed using Integral Projection Models and elasticity analyses. Temperature increases due to open-top chamber installation were higher in forests than in hedgerows. In forests, the warming treatment had a significant negative effect on the population growth rate of G. urbanum. In contrast, no significant effect of the warming treatment on population dynamics was detected in hedgerows. Overall, the highest population growth rates were found in the forest control sites, which was driven by a higher fecundity rather than a higher survival probability. Effects of warming treatments on G. urbanum population growth rates differed between forests and hedgerows. In forests, warming treatments negatively affected population growth, but not in hedgerows. This could be a consequence of the overall lower warming achieved in hedgerows. We conclude that maintenance of cooler forest microclimates coul, at least temporarily, moderate the species response to climate warming.


Asunto(s)
Geum , Cambio Climático , Bosques , Microclima , Plantas , Temperatura
4.
Plant Biol (Stuttg) ; 23(6): 1051-1062, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34516719

RESUMEN

Climate change, eutrophication and intensified forest management are affecting forest understorey plants, a major component of forest biodiversity. The main impacts of these drivers have often been studied, but we lack a good understanding of how key understorey species are affected by potential interactive effects of these drivers and which species drive community changes. Here we assessed the responses of 15 species occurring in the understorey of a deciduous temperate forest to experimental warming, light addition and enhanced nitrogen inputs in permanent plots surveyed for 9 years. We analysed vegetation cover and key functional traits (plant height, specific leaf area and reproductive traits) at the species level and identified the species driving community change with principal response curves (PRC). Light addition and warming, and to a lesser extent also nitrogen addition, had profound effects on cover and functional traits. Many species showed directional change over time, and this change can either be strengthened or weakened by treatments, indicating the importance of long-term monitoring. Against expectations, we observed few interactions between treatments. Species responses to treatments were related to ecological strategies (generalists versus forest specialist). Generalists, such as Rubus fruticosus, benefitted from the warming and light treatments and outcompeted forest specialists. This might ultimately lead to biotic homogenization. Since the treatment effects of light and warming were additive, keeping the canopy closed will only mitigate, but not stop, the effects of global warming on the forest understorey plants.


Asunto(s)
Ecosistema , Nitrógeno , Biodiversidad , Bosques , Plantas
5.
Plant Biol (Stuttg) ; 22(4): 601-614, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32109335

RESUMEN

Intraspecific trait variation (ITV; i.e. variability in mean and/or distribution of plant attribute values within species) can occur in response to multiple drivers. Environmental change and land-use legacies could directly alter trait values within species but could also affect them indirectly through changes in vegetation cover. Increasing variability in environmental conditions could lead to more ITV, but responses might differ among species. Disentangling these drivers on ITV is necessary to accurately predict plant community responses to global change. We planted herb communities into forest soils with and without a recent history of agriculture. Soils were collected across temperate European regions, while the 15 selected herb species had different colonizing abilities and affinities to forest habitat. These mesocosms (384) were exposed to two-level full-factorial treatments of warming, nitrogen addition and illumination. We measured plant height and specific leaf area (SLA). For the majority of species, mean plant height increased as vegetation cover increased in response to light addition, warming and agricultural legacy. The coefficient of variation (CV) for height was larger in fast-colonizing species. Mean SLA for vernal species increased with warming, while light addition generally decreased mean SLA for shade-tolerant species. Interactions between treatments were not important predictors. Environmental change treatments influenced ITV, either via increasing vegetation cover or by affecting trait values directly. Species' ITV was individualistic, i.e. species responded to different single resource and condition manipulations that benefited their growth in the short term. These individual responses could be important for altered community organization after a prolonged period.


Asunto(s)
Cambio Climático , Ecosistema , Bosques , Europa (Continente) , Nitrógeno/metabolismo , Plantas/metabolismo , Suelo/química
6.
Plant Biol (Stuttg) ; 22 Suppl 1: 113-122, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30739399

RESUMEN

Plants are known to respond to warming temperatures. Few studies, however, have included the temperature experienced by the parent plant in the experimental design, in spite of the importance of this factor for population dynamics. We investigated the phenological and growth responses of seedlings of two key temperate tree species (Fagus sylvatica and Quercus robur) to spatiotemporal temperature variation during the reproductive period (parental generation) and experimental warming of the offspring. To this end, we sampled oak and beech seedlings of different ages (1-5 years) from isolated mother trees and planted the seedlings in a common garden. Warming of the seedlings advanced bud burst in both species. In oak seedlings, higher temperatures experienced by mother trees during the reproductive period delayed bud burst in control conditions, but advanced bud burst in heated seedlings. In beech seedlings, bud burst timing advanced both with increasing temperatures during the reproductive period of the parents and with experimental warming of the seedlings. Relative diameter growth was enhanced in control oak seedlings but decreased with warming when the mother plant experienced higher temperatures during the reproductive period. Overall, oak displayed more plastic responses to temperatures than beech. Our results emphasise that temperature during the reproductive period can be a potential determinant of tree responses to climate change.


Asunto(s)
Fagus , Quercus , Plantones , Temperatura , Fagus/crecimiento & desarrollo , Quercus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo
7.
Plant Biol (Stuttg) ; 21(4): 677-687, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30659728

RESUMEN

Climate change is driving movements of many plants beyond, as well as within, their current distributional ranges. Even migrant plants moving within their current range may experience different plant-soil feedbacks (PSF) because of divergent nonlocal biotic soil conditions. Yet, our understanding to what extent soil biotic conditions can affect the performance of within-range migrant plants is still very limited. We assessed the emergence and growth of migrant forest herbs (Milium effusum and Stachys sylvatica) using soils and seeds collected along a 1,700 km latitudinal gradient across Europe. Soil biota were manipulated through four soil treatments, i.e. unsterilized control soil (PSFUS ), sterilized soil (PSFS ), sterilized soil inoculated with unsterilized home soil (PSFS+HI ) and sterilized soil inoculated with unsterilized foreign soil (PSFS+FI , expected to occur when both plants and soil biota track climate change). Compared to PSFS , PSFUS had negative effects on the growth but not emergence of both species, while PSFS+FI only affected S. sylvatica across all seed provenances. When considering seed origin, seedling emergence and growth responses to nonlocal soils depended on soil biotic conditions. Specifically, the home-away distance effect on seedling emergence differed between the four treatments, and significant responses to chemistry either disappeared (M. effusum) or changed (S. sylvatica) from PSFUS to PSFS . Soil biota emerge as an important driver of the estimated plant migration success. Our results of the effects of soil microorganisms on plant establishment provide relevant information for predictions of the distribution and dynamics of plant species in a changing climate.


Asunto(s)
Bosques , Poaceae/crecimiento & desarrollo , Suelo , Stachys/crecimiento & desarrollo , Ecosistema , Retroalimentación Fisiológica , Microbiología del Suelo
8.
Plant Biol (Stuttg) ; 20(3): 619-626, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29323793

RESUMEN

Elevated atmospheric input of nitrogen (N) is currently affecting plant biodiversity and ecosystem functioning. The growth and survival of numerous plant species is known to respond strongly to N fertilisation. Yet, few studies have assessed the effects of N deposition on seed quality and reproductive performance, which is an important life-history stage of plants. Here we address this knowledge gap by assessing the effects of atmospheric N deposition on seed quality of the ancient forest herb Anemone nemorosa using two complementary approaches. By taking advantage of the wide spatiotemporal variation in N deposition rates in pan-European temperate and boreal forests over 2 years, we detected positive effects of N deposition on the N concentration (percentage N per unit seed mass, increased from 2.8% to 4.1%) and N content (total N mass per seed more than doubled) of A. nemorosa seeds. In a complementary experiment, we applied ammonium nitrate to aboveground plant tissues and the soil surface to determine whether dissolved N sources in precipitation could be incorporated into seeds. Although the addition of N to leaves and the soil surface had no effect, a concentrated N solution applied to petals during anthesis resulted in increased seed mass, seed N concentration and N content. Our results demonstrate that N deposition on the petals enhances bioaccumulation of N in the seeds of A. nemorosa. Enhanced atmospheric inputs of N can thus not only affect growth and population dynamics via root or canopy uptake, but can also influence seed quality and reproduction via intake through the inflorescences.


Asunto(s)
Anemone/fisiología , Flores/metabolismo , Nitrógeno/metabolismo , Semillas/fisiología , Anemone/química , Anemone/metabolismo , Atmósfera , Clima , Europa (Continente) , Flores/química , Bosques , Nitrógeno/análisis , Reproducción/fisiología
9.
Plant Biol (Stuttg) ; 18(3): 417-22, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26465806

RESUMEN

With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper.


Asunto(s)
Gametogénesis en la Planta , Juniperus/fisiología , Semillas/fisiología , Bélgica , Clima , Europa (Continente) , Fertilización , Francia , Juniperus/embriología , Reproducción , Semillas/embriología , Temperatura
10.
Plant Biol (Stuttg) ; 17(1): 52-62, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24750437

RESUMEN

Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life-cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A. platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200-km long latitudinal gradient. For most of the responses, A. platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A. platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A. pseudoplatanus in the face of climate change.


Asunto(s)
Acer/fisiología , Cambio Climático , Sequías , Germinación , Regeneración , Plantones/fisiología , Semillas/fisiología , Suelo/química , Temperatura , Árboles
11.
Ann Bot ; 113(3): 489-500, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24284814

RESUMEN

BACKGROUND AND AIMS: Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. METHODS: In 42 populations throughout the distribution range of common juniper in Europe, 11,943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. KEY RESULTS: Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. CONCLUSIONS: Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur.


Asunto(s)
Juniperus/fisiología , Nitrógeno/metabolismo , Semillas/fisiología , Atmósfera/análisis , Cambio Climático , Ecosistema , Europa (Continente) , Geografía , Germinación , Juniperus/embriología , Juniperus/crecimiento & desarrollo , Hojas de la Planta/embriología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Polinización , Reproducción , Semillas/embriología , Semillas/crecimiento & desarrollo , Temperatura
12.
Plant Biol (Stuttg) ; 15(1): 210-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22672421

RESUMEN

Common juniper (Juniperus communis L.) populations in northwest European lowlands are currently declining in size and number. An important cause of this decline is a lack of natural regeneration. Low seed viability seems to be one of the main bottlenecks in this process. Previous research revealed a negative relation between seed viability and both temperature and nitrogen deposition. Additionally, the seeds of common juniper have a variable ripening time, which possibly influences seed viability. However, the underlying mechanisms remain unresolved. In order to elucidate this puzzle, it is important to understand in which phases of seed production the main defects are situated, together with the influence of ripening time. In this study, we compared seed viability of populations with and without successful recruitment. We examined three seed phases: (i) gamete development; (ii) fertilisation and early-embryo development; and (iii) late-embryo development. After the first two phases, we found no difference in the percentage viable seeds between populations with or without recruitment. After late-embryo development, populations without recruitment showed a significantly lower percentage of viable seeds. These results suggest that late-embryo development is a bottleneck in seed development. However, the complex interaction between seed viability and ripening time suggest that the causes should be in the second seed phase, as the accelerated development of male and female gametophytes may disturb the male-female synchrony for successful mating.


Asunto(s)
Juniperus/crecimiento & desarrollo , Polinización , Semillas/crecimiento & desarrollo , Animales , Clima , Fertilización , Frutas/embriología , Frutas/crecimiento & desarrollo , Frutas/parasitología , Frutas/fisiología , Geografía , Células Germinativas de las Plantas , Germinación , Himenópteros/fisiología , Juniperus/embriología , Juniperus/parasitología , Juniperus/fisiología , Ácaros/fisiología , Nitrógeno/metabolismo , Enfermedades de las Plantas/parasitología , Polen/embriología , Polen/crecimiento & desarrollo , Polen/parasitología , Polen/fisiología , Semillas/embriología , Semillas/parasitología , Semillas/fisiología , Temperatura , Factores de Tiempo , Árboles
13.
Parasitology ; 139(10): 1273-81, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22717041

RESUMEN

The mainstream forestry policy in many European countries is to convert coniferous plantations into (semi-natural) deciduous woodlands. However, woodlands are the main habitat for Ixodes ricinus ticks. Therefore, assessing to what extent tick abundance and infection with Borrelia spirochetes are affected by forest composition and structure is a prerequisite for effective prevention of Lyme borreliosis. We selected a total of 25 pine and oak stands, both with and without an abundant shrub layer, in northern Belgium and estimated tick abundance between April and October 2008-2010. Additionally, the presence of deer beds was used as an indicator of relative deer habitat use. Borrelia infections in questing nymphs were determined by polymerase chain reactions. The abundance of larvae, nymphs, and adults was higher in oak stands compared to pine stands and increased with increasing shrub cover, most likely due to differences in habitat use by the ticks' main hosts. Whereas tick abundance was markedly higher in structure-rich oak stands compared to homogeneous pine stands, the Borrelia infection rates in nymphs did not differ significantly. Our results indicate that conversion towards structure-rich deciduous forests might create more suitable tick habitats, but we were unable to detect an effect on the infection rate.


Asunto(s)
Ecosistema , Ixodes/fisiología , Árboles/fisiología , Animales , Bélgica , Borrelia/fisiología , Ciervos/fisiología , Ixodes/microbiología , Larva , Ninfa/microbiología , Densidad de Población
14.
Plant Biol (Stuttg) ; 13(3): 493-501, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21489100

RESUMEN

The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours >5 °C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success.


Asunto(s)
Anemone/química , Semillas/química , Árboles , Anemone/metabolismo , Calcio/análisis , Calcio/metabolismo , Europa (Continente) , Geografía , Nitrógeno/análisis , Nitrógeno/metabolismo , Fósforo/análisis , Fósforo/metabolismo , Semillas/metabolismo , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...