Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsc Microanal ; 30(1): 1-13, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38156710

RESUMEN

Early-stage clustering in two Al-Mg-Zn(-Cu) alloys has been investigated using atom probe tomography and transmission electron microscopy. Cluster identification by the isoposition method and a statistical approach based on the pair correlation function have both been applied to estimate the cluster size, composition, and volume fraction from atom probe data sets. To assess the accuracy of the quantification of clusters of different mean sizes, synthesized virtual data sets were used, accounting for a simulated degraded spatial resolution. The quality of the predictions made by the two complementary methods is discussed, considering the experimental and simulated data sets.

2.
Nat Mater ; 22(4): 434-441, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36536142

RESUMEN

Lightweight design strategies and advanced energy applications call for high-strength Al alloys that can serve in the 300‒400 °C temperature range. However, the present commercial high-strength Al alloys are limited to low-temperature applications of less than ~150 °C, because it is challenging to achieve coherent nanoprecipitates with both high thermal stability (preferentially associated with slow-diffusing solutes) and large volume fraction (mostly derived from high-solubility and fast-diffusing solutes). Here we demonstrate an interstitial solute stabilizing strategy to produce high-density, highly stable coherent nanoprecipitates (termed the V phase) in Sc-added Al-Cu-Mg-Ag alloys, enabling the Al alloys to reach an unprecedented creep resistance as well as exceptional tensile strength (~100 MPa) at 400 °C. The formation of the V phase, assembling slow-diffusing Sc and fast-diffusing Cu atoms, is triggered by coherent ledge-aided in situ phase transformation, with diffusion-dominated Sc uptake and self-organization into the interstitial ordering of early-precipitated Ω phase. We envisage that the ledge-mediated interaction between slow- and fast-diffusing atoms may pave the way for the stabilization of coherent nanoprecipitates towards advanced 400 °C-level light alloys, which could be readily adapted to large-scale industrial production.

3.
Microsc Microanal ; : 1-11, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34666868

RESUMEN

Atom probe tomography (APT) is often introduced as providing "atomic-scale" mapping of the composition of materials and as such is often exploited to analyze atomic neighborhoods within a material. Yet quantifying the actual spatial performance of the technique in a general case remains challenging, as it depends on the material system being investigated as well as on the specimen's geometry. Here, by using comparisons with field-ion microscopy experiments, field-ion imaging and field evaporation simulations, we provide the basis for a critical reflection on the spatial performance of APT in the analysis of pure metals, low alloyed systems and concentrated solid solutions (i.e., akin to high-entropy alloys). The spatial resolution imposes strong limitations on the possible interpretation of measured atomic neighborhoods, and directional neighborhood analyses restricted to the depth are expected to be more robust. We hope this work gets the community to reflect on its practices, in the same way, it got us to reflect on our work.

4.
Phys Rev Lett ; 124(10): 106102, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216435

RESUMEN

The boundary between two crystal grains can decompose into arrays of facets with distinct crystallographic character. Faceting occurs to minimize the system's free energy, i.e., when the total interfacial energy of all facets is below that of the topologically shortest interface plane. In a model Al-Zn-Mg-Cu alloy, we show that faceting occurs at investigated grain boundaries and that the local chemistry is strongly correlated with the facet character. The self-consistent coevolution of facet structure and chemistry leads to the formation of periodic segregation patterns of 5-10 nm, or to preferential precipitation. This study shows that segregation-faceting interplay is not limited to bicrystals but exists in bulk engineering Al alloys and hence affects their performance.

5.
Microsc Microanal ; 23(2): 238-246, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28148309

RESUMEN

There are two main projections used to transform, and reconstruct, field ion micrographs or atom probe tomography data into atomic coordinates at the specimen surface and, subsequently, in three dimensions. In this article, we present a perspective on the strength of the azimuthal equidistant projection in comparison with the more widely used and well-established point projection (or pseudo-stereographic projection), which underpins data reconstruction in most software packages currently in use across the community. After an overview of the reconstruction methodology, we demonstrate that the azimuthal equidistant is more robust with regards to errors on the parameters used to perform the reconstruction and is therefore more likely to yield more accurate tomographic reconstructions.

6.
Microsc Microanal ; 16(1): 99-110, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20082732

RESUMEN

This article addresses gaps in definitions and a lack of standard measurement techniques to assess the spatial resolution in atom probe tomography. This resolution is known to be anisotropic, being better in-depth than laterally. Generally the presence of atomic planes in the tomographic reconstruction is considered as being a sufficient proof of the quality of the spatial resolution of the instrument. Based on advanced spatial distribution maps, an analysis methodology that interrogates the local neighborhood of the atoms within the tomographic reconstruction, it is shown how both the in-depth and the lateral resolution can be quantified. The influences of the crystallography and the temperature are investigated, and models are proposed to explain the observed results. We demonstrate that the absolute value of resolution is specimen specific.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...