Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Spectrosc ; : 37028241241076, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529539

RESUMEN

Real-time analysis of fine ash in volcanic plumes, which represent magma fragments expelled from the crater during explosive eruptions, is a valuable tool for volcano monitoring and hazard assessment. To obtain the chemical characterization of the juvenile pyroclastic material emitted in volcanic plumes, many analytical techniques can be used. Among them, laser-induced breakdown spectroscopy (LIBS) is the one that can most easily be adapted to advanced applications in extreme environments. In this paper, LIBS experiments based on self-calibrated approaches are used to determine the elemental composition of suspended volcanic ash. To simulate the conditions of dispersed volcanic ash in the atmosphere, different sizes of volcanic ash samples are suspended in the air by laser-induced shockwaves in a dedicated chamber, and a parametric study is carried out to establish the optimal experimental conditions for recording usable plasma emission spectra for each ash size. The quantitative analysis is performed using a self-calibrated analytical method, including calibration-free LIBS, which is based on the calculation of the spectral radiance of a uniform plasma in local thermodynamic equilibrium. The method accounts intrinsically for self-absorption since it modifies the intensity of spectral lines and thus leads to an underestimation of the elemental fraction. An intensity calibration of the spectra based on the measurements of Fe lines intensities was also used in this work to deduce the apparatus response from the spectrum itself and avoid the use of standard calibration lamps. Results demonstrate the potential of real-time measurements of elemental fractions in volcanic ash with good agreement with the literature composition.

2.
Talanta ; 271: 125723, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295442

RESUMEN

Nanoparticle-enhanced laser-induced breakdown spectroscopy and Tag-LIBS are two approaches that have been shown to significantly enhance LIBS sensitivity and specificity. In an effort to combine both of these approaches, we have initiated a study on the effect of the presence of Silver nanoparticle concentrations on Europium (Eu) and Ytterbium (Yb) LIBS signals. These elements are part of metal-loaded polymers conjugated to antibodies. We observe a signal enhancement of the emission lines of about 10 and 12 times for the Europium and Ytterbium lines. This study shows that Europium and Ytterbium are enhanced differently; Europium shows enhancement for both neutral and ionized species while the Ytterbium shows enhancement only for ionized species. Additionally, we found that NPs at 0.1 mg/mL and 0.05 mg/mL achieved maximum enhancement for Eu and Yb, respectively. Based on our findings, the temperature and electron density of Eu and Yb are not significantly different for NPs concentrations, but the total signal intensity is significantly higher for optimum NP concentrations for both Eu and Yb.


Asunto(s)
Europio , Nanopartículas del Metal , Europio/química , Iterbio/química , Nanopartículas del Metal/química , Plata/química , Análisis Espectral , Biomarcadores , Rayos Láser
3.
Talanta ; 235: 122741, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34517609

RESUMEN

Recently nanoparticle enhanced Laser Induced Breakdown Spectroscopy (NELIBS) is getting a growing interest as an effective alternative method for improving the analytical performance of LIBS. On the other hand, the plasmonic effect during laser ablation can be used for a different task rather than elemental analysis. In this paper, the dependence of NELIBS emission signal enhancement on nanoparticle-protein solutions dried on a reference substrate (metallic titanium) was investigated. Two proteins were studied: Human Serum Albumin (HSA) and Cytochrome C (CytC). Both proteins have a strong affinity for the gold nanoparticles (AuNPs) due to the bonding between the single free exterior thiol (associated with a cysteine residue) and the gold surface to form a stable protein corona. Then, since the protein sizes are vastly different, a different number of protein units is needed to cover AuNP surface to form a protein layer. The NP-protein solution was dropped and dried onto the titanium substrate. Then the NELIBS signal enhancement of Ti emission lines was correlated to the solution characteristics as determined with Dynamic Light Scattering (DLS), Surface Plasmon Resonance (SPR) spectroscopy and Laser Doppler Electrophoresis (LDE) for ζ-potential determination. Moreover, the dried solutions were studied with TEM (Transmission Electron Microscopy) for the inspection of the inter-particle distance. The structural effect of the NP-protein conjugates on the NELIBS signal reveals that NELIBS can be used to determine the number of protein units required to form the nanoparticle-protein corona with good accuracy. Although the investigated NP-protein systems are simple cases in biological applications, this work demonstrates, for the first time, a different use of NELIBS that is beyond elemental analysis and it opens the way for sensing the nanoparticle protein corona.


Asunto(s)
Nanopartículas del Metal , Corona de Proteínas , Oro , Humanos , Rayos Láser , Análisis Espectral
4.
Talanta ; 222: 121512, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33167223

RESUMEN

In this work we discuss how sample surface topography can significantly influence the laser ablation (LA) process and, in turn, the analytical response of the LA Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) method. Six different surface topographies were prepared on a certified aluminium alloy sample BAM 311 and SRM NIST 610 to investigate the phenomenon. All the samples were repetitively measured by LA-ICP-MS using a spot by spot analysis. The effect of laser fluence in the range of 1-13 J/cm2 was studied. For majority of measured isotopes, the ICP-MS signal was amplified with roughening of the sample surface. A stronger effect was observed on the Al alloy sample, where the more than sixty-time enhancement was achieved in comparison to the polished surface of the sample. Since the effect of surface topography is different for each analyte, it can be stated that surface properties affect not only the ICP-MS response, but also elemental fractionation in LA. The presented results show that different surface topographies may lead to misleading data interpretation because even when applying ablation preshots, the signal of individual elements changes. The utmost care must be taken when preparing the surface for single shot analysis or chemical mapping. On the other hand, by roughening the sample surface, it is possible to significantly increase the sensitivity of the method for individual analytes and supress a matrix effect.

5.
Nanomaterials (Basel) ; 10(11)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238455

RESUMEN

Laser synthesis emerges as a suitable technique to produce ligand-free nanoparticles, alloys and functionalized nanomaterials for catalysis, imaging, biomedicine, energy and environmental applications. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment and conjugate a large variety of nanostructures in a scalable and clean way. In this work, we give an overview on the fundamentals of pulsed laser synthesis of nanocolloids and new information about its scalability towards selected applications. Biomedicine, catalysis and sensing are the application areas mainly discussed in this review, highlighting advantages of laser-synthesized nanoparticles for these types of applications and, once partially resolved, the limitations to the technique for large-scale applications.

6.
Nanomaterials (Basel) ; 9(7)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261631

RESUMEN

In this paper, the Variational Method based on the Hückel Theory is applied to NPs chain and aggregate systems in order to estimate the energy of the plasmon and, in turn, the resonance wavelength shift, which is caused by the interaction of adjacent NPs. This method is based on the analogies of NPs dipole interactions and the π-system in molecules. Differently from the Hartree-Fock method that is a self-consistent model, in this approach, the input data that this method requires is the dimer energy shift with respect to single NPs. This enables us to acquire a simultaneous estimation of the wavefunctions of the NPs system as well as the expectation energy value of every kind of NPs system. The main advantage of this approach is the rapid response and ease of application to every kind of geometries and spacing from the linear chain to clusters, without the necessity of a time-consuming calculation. The results obtained with this model are closely aligned to related literature and open the way to further development of this methodology for investigating other properties of NPs systems.

7.
Chemphyschem ; 18(9): 1165-1174, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28135402

RESUMEN

In this work the effects of the pressure between 1-150 Bar on pulsed laser ablation in liquids (PLAL) during the production of silver nanoparticles (AgNPs) in water was investigated. The produced NPs are the results of two different well-known stages which are the plasma and the bubble evolution occurring until the generated material is released into the solution. The main aim of this work is to show which roles is played by the variation of water pressure on the laser induced plasma and the cavitation bubble dynamics during the NPs formation. Their implication on the comprehension of the as-produced NPs formation mechanisms is treated. The typical timescales of the different stages occurring in water at different pressures have been studied by optical emission spectroscopy (OES), imaging and shadowgraph experiments. Finally surface plasmon resonance (SPR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS) and scanning electron microscopy (SEM) for characterization of the material released in solution, have been used.

8.
J Colloid Interface Sci ; 489: 47-56, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27692858

RESUMEN

"Naked" gold nanoparticles (AuNPs), synthesized in the absence of any capping agents, prepared by pulsed laser ablation in liquid (PLAL) are stabilized by negative charges. Common explanations for this phenomenon involve the presence of gold oxides and/or the anion adsorption. We have found that AuNP ablated in solutions of acids with very different oxidation power, viz. HCl, H2SO4, HNO3 share the same size and ζ-potential. Although, gold oxides have pKas≈4, the ζ-potential of AuNPs ablated in solutions with pH⩽4 is always negative. These evidences suggest that the gold oxidation and anion adsorptions have only a minor role on building the negative surface potential and we hypothesize, for the first time, that excess electrons formed within the plasma phase could charge the metallic particles. In our model, a crucial point is that the colloidal size of the NP maintains the energy of the electrons small enough to preclude chemical reactions but with a surface potential yet large enough to stabilize the AuNPs with respect to aggregation. A confirmation of the hypothesis of "electron-stabilized nanoparticles" is that either the addition of macroscopic metallic objects either the contact with a "grounded" copper wire induce the loss of charge and AuNPs aggregation.

10.
Anal Chem ; 88(10): 5251-7, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27109702

RESUMEN

In this paper, nanoparticle enhanced laser-induced breakdown spectroscopy (NELIBS) was applied to the elemental chemical analysis of microdrops of solutions with analyte concentration at subppm level. The effect on laser ablation of the strong local enhancement of the electromagnetic field allows enhancing the optical emission signal up to more than 1 order of magnitude, enabling LIBS to quantify ppb concentration and notably decreasing the limit of detection (LOD) of the technique. At optimized conditions, it was demonstrated that NELIBS can reach an absolute LOD of few picograms for Pb and 0.2 pg for Ag. The effect of field enhancement in NELIBS was tested on biological solutions such as protein solutions and human serum, in order to improve the sensitivity of LIBS with samples where the formation and excitation of the plasma are not as efficient as with metals. Even in these difficult cases, a significant improvement with respect to conventional LIBS was observed.


Asunto(s)
Rayos Láser , Plomo/análisis , Nanopartículas/química , Plata/análisis , Espectrofotometría , Humanos , Plomo/sangre , Límite de Detección , Plata/sangre
11.
Chemistry ; 20(34): 10745-51, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25060114

RESUMEN

The interaction of nanoparticles with proteins has emerged as a key issue in addressing the problem of nanotoxicity. We investigated the interaction of silver nanoparticles (AgNPs), produced by laser ablation with human ubiquitin (Ub), a protein essential for degradative processes in cells. The surface plasmon resonance peak of AgNPs indicates that Ub is rapidly adsorbed on the AgNP surface yielding a protein corona; the Ub-coated AgNPs then evolve into clusters held together by an amyloid form of the protein, as revealed by binding of thioflavin T fluorescent dye. Transthyretin, an inhibitor of amyloid-type aggregation, impedes aggregate formation and disrupts preformed AgNP clusters. In the presence of sodium citrate, a common stabilizer that confers an overall negative charge to the NPs, Ub is still adsorbed on the AgNP surface, but no clustering is observed. Ub mutants bearing a single mutation at one edge ß strand (i.e. Glu16Val) or in loop (Glu18Val) behave in a radically different manner.


Asunto(s)
Amiloide/química , Rayos Láser , Nanopartículas del Metal/química , Plata/química , Ubiquitina/química , Amiloide/metabolismo , Benzotiazoles , Citratos/química , Humanos , Mutación Puntual , Estructura Secundaria de Proteína , Citrato de Sodio , Resonancia por Plasmón de Superficie , Tiazoles/química , Ubiquitina/genética , Ubiquitina/metabolismo
12.
Phys Chem Chem Phys ; 15(48): 20868-75, 2013 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-24196485

RESUMEN

Experiments of collinear Double Pulse Laser Ablation in Liquid (DP-LAL) were carried out for studying the production mechanisms of nanoparticles (NPs) in water, which revealed the fundamental role of the cavitation bubble dynamics in the formation of aqueous colloidal dispersions. In this work, DP-LAL was used to generate silver nanoparticles (AgNPs) from a silver target submerged in water at atmospheric pressure and room temperature, by using the second harmonic (532 nm) of two Nd:YAG lasers. The second laser pulse was shot at different delay times (i.e. interpulse delay) during the bubble temporal evolution of the first laser induced bubble. Optical Emission Spectroscopy, Shadowgraph Images, Surface Plasmon Resonance absorption spectroscopy and Dynamic Light Scattering were carried out to study the behaviour of laser-induced plasma and cavitation bubbles during the laser ablation in liquid, to monitor the generation of AgNPs under different conditions, and for characterization of NPs. The results of DP-LAL were always compared with the corresponding ones obtained with Single Pulse Laser Ablation in Liquid (SP-LAL), so as to highlight the peculiarities of the two different techniques.

13.
Phys Chem Chem Phys ; 15(9): 3093-8, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23247630

RESUMEN

Using wires of defined diameters instead of a planar target for pulsed laser ablation in liquid results in significant increase of ablation efficiency and nanoparticle productivity up to a factor of 15. We identified several competitive phenomena based on thermal conductivity, reflectivity and cavitation bubble shape that affect the ablation efficiency when the geometry of the target is changed. On the basis of the obtained results, this work represents an intriguing starting point for further developments related to the up-scaling of pulsed laser ablation in liquid environments at the industrial level.

14.
J Environ Monit ; 13(5): 1422-6, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21416069

RESUMEN

Laser Induced Breakdown Spectroscopy (LIBS) is a fast and multi-elemental analytical technique particularly suitable for the qualitative and quantitative analysis of heavy metals in solid samples, including environmental ones. Although LIBS is often recognised in the literature as a well-established analytical technique, results about quantitative analysis of elements in chemically complex matrices such as soils are quite contrasting. In this work, soil samples of various origins have been analyzed by LIBS and data compared to those obtained by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The emission intensities of one selected line for each of the five analytes (i.e., Cr, Cu, Pb, V, and Zn) were normalized to the background signal, and plotted as a function of the concentration values previously determined by ICP-OES. Data showed a good linearity for all calibration lines drawn, and the correlation between ICP-OES and LIBS was confirmed by the satisfactory agreement obtained between the corresponding values. Consequently, LIBS method can be used at least for metal monitoring in soils. In this respect, a simple method for the estimation of the soil pollution degree by heavy metals, based on the determination of an anthropogenic index, was proposed and determined for Cr and Zn.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Espectrofotometría Atómica/métodos , Calibración , Cromo/análisis , Cromo/química , Cobre/análisis , Cobre/química , Monitoreo del Ambiente/métodos , Rayos Láser , Plomo/análisis , Plomo/química , Metales Pesados/química , Suelo/química , Contaminantes del Suelo/química , Vanadio/análisis , Vanadio/química , Zinc/análisis , Zinc/química
15.
Sensors (Basel) ; 10(8): 7434-68, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22163611

RESUMEN

Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS), namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds.


Asunto(s)
Monitoreo del Ambiente/métodos , Rayos Láser , Suelo/análisis , Análisis Espectral/instrumentación , Análisis Espectral/métodos , Arqueología/métodos , Astronomía/métodos , Calibración , Ambiente , Meteoroides , Reproducibilidad de los Resultados
16.
Appl Opt ; 42(30): 5963-70, 2003 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-14594052

RESUMEN

We present a theoretical approach to interpreting optical emission spectroscopy measurements for nonequilibrium conditions. In this approach both the fluid dynamics and the kinetics of laser-induced plasma are taken into account, and the results obtained by the numerical model are applied to the spectroscopic observation of the plasma induced by the interaction between a KrF laser and a metallic Ti target. We have generalized the theoretical method to calculate the initial conditions for the plume expansion that show the best agreement with experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...