Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38785720

RESUMEN

Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we designed a synthetic genetic circuit specifically tailored for detecting ionic mercury, which we applied to environmental samples collected from artisanal gold mining sites in Peru. We developed two distinct versions of the biosensor, each utilizing a different reporter protein: a fluorescent biosensor (Mer-RFP) and a colorimetric biosensor (Mer-Blue). Mer-RFP enabled real-time monitoring of the culture's response to mercury samples using a plate reader, whereas Mer-Blue was analysed for colour accumulation at the endpoint using a specially designed, low-cost camera setup for harvested cell pellets. Both biosensors exhibited negligible baseline expression of their respective reporter proteins and responded specifically to HgBr2 in pure water. Mer-RFP demonstrated a linear detection range from 1 nM to 1 µM, whereas Mer-Blue showed a linear range from 2 nM to 125 nM. Our biosensors successfully detected a high concentration of ionic mercury in the reaction bucket where artisanal miners produce a mercury-gold amalgam. However, they did not detect ionic mercury in the water from active mining ponds, indicating a concentration lower than 3.2 nM Hg2+-a result consistent with chemical analysis quantitation. Furthermore, we discuss the potential of Mer-Blue as a practical and affordable monitoring tool, highlighting its stability, reliance on simple visual colorimetry, and the possibility of sensitivity expansion to organic mercury.


Asunto(s)
Técnicas Biosensibles , Monitoreo del Ambiente , Mercurio , Mercurio/análisis , Monitoreo del Ambiente/métodos , Colorimetría , Contaminantes Químicos del Agua/análisis , Límite de Detección , Oro/química
2.
Appl Environ Microbiol ; 88(18): e0081422, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36073947

RESUMEN

The introduction in modern breweries of tall cylindroconical fermentors, replacing the traditional open fermentation vats, unexpectedly revealed strong inhibition of flavor production by the high CO2 pressure in the fermentors. We have screened our collection of Saccharomyces cerevisiae strains for strains displaying elevated tolerance to inhibition of flavor production by +0.65 bar CO2, using a laboratory scale CO2 pressurized fermentation system. We focused on the production of isoamyl acetate, a highly desirable flavor compound conferring fruity banana flavor in beer and other alcoholic beverages, from its precursor isoamyl alcohol (IAAc/Alc ratio). We selected the most tolerant Saccharomyces cerevisiae strain, saké yeast Kyokai no. 1, isolated a stable haploid segregant seg63 with the same high IAAc/Alc ratio under CO2 pressure, crossed seg63 with the unrelated inferior strain ER7A and phenotyped 185 haploid segregants, of which 28 displaying a high IAAc/Alc ratio were pooled. Mapping of Quantitative Trait Loci (QTLs) by whole-genome sequence analysis based on SNP variant frequency revealed two QTLs. In the major QTL, reciprocal hemizygosity analysis identified MDS3 as the causative mutant gene, a putative member of the TOR signaling pathway. The MDS3Seg.63 allele was dominant and contained a single causative point mutation, T2171C, resulting in the F274S substitution. Introduction of MDS3Seg.63 in an industrial tetraploid lager yeast with CRISPR/Cas9 enhanced isoamyl acetate production by 145% under CO2 pressure. This work shows the strong potential of polygenic analysis and targeted genetic modification for creation of cisgenic industrial brewer's yeast strains with specifically improved traits. IMPORTANCE The upscaling of fermentation to very tall cylindroconical tanks is known to negatively impact beer flavor. Most notably, the increased CO2 pressure in such tanks compromises production by the yeast of the desirable fruity "banana" flavor (isoamyl acetate). The cause of the CO2 inhibition of yeast flavor production has always remained enigmatic. Our work has brought the first insight into its molecular-genetic basis and provides a specific gene tool for yeast strain improvement. We first identified a yeast strain with superior tolerance to CO2 inhibition of flavor production, and applied polygenic analysis to identify the responsible gene. We narrowed down the causative element to a single nucleotide difference, MDS3T2171C, and showed that it can be engineered into brewing yeast to obtain strains with superior flavor production in high CO2 pressure conditions, apparently without affecting other traits relevant for beer brewing. Alternatively, such a strain could be obtained through marker-assisted breeding.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Bebidas Alcohólicas , Dióxido de Carbono/metabolismo , Fermentación , Nucleótidos/metabolismo , Pentanoles , Fitomejoramiento , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Front Cell Dev Biol ; 10: 1041930, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699012

RESUMEN

The presence of sugar in the gut causes induction of SGLT1, the sodium/glucose cotransporter in intestinal epithelial cells (enterocytes), and this is accompanied by stimulation of sugar absorption. Sugar sensing was suggested to involve a G-protein coupled receptor and cAMP - protein kinase A signalling, but the sugar receptor has remained unknown. We show strong expression and co-localization with SGLT1 of the ß2-adrenergic receptor (ß 2-AR) at the enterocyte apical membrane and reveal its role in stimulating glucose uptake from the gut by the sodium/glucose-linked transporter, SGLT1. Upon heterologous expression in different reporter systems, the ß 2-AR responds to multiple sugars in the mM range, consistent with estimated gut sugar levels after a meal. Most adrenergic receptor antagonists inhibit sugar signaling, while some differentially inhibit epinephrine and sugar responses. However, sugars did not inhibit binding of I125-cyanopindolol, a ß 2-AR antagonist, to the ligand-binding site in cell-free membrane preparations. This suggests different but interdependent binding sites. Glucose uptake into everted sacs from rat intestine was stimulated by epinephrine and sugars in a ß 2-AR-dependent manner. STD-NMR confirmed direct physical binding of glucose to the ß 2-AR. Oral administration of glucose with a non-bioavailable ß 2-AR antagonist lowered the subsequent increase in blood glucose levels, confirming a role for enterocyte apical ß 2-ARs in stimulating gut glucose uptake, and suggesting enterocyte ß 2-AR as novel drug target in diabetic and obese patients. Future work will have to reveal how glucose sensing by enterocytes and neuroendocrine cells is connected, and whether ß 2-ARs mediate glucose sensing also in other tissues.

4.
Genome Res ; 29(9): 1478-1494, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31467028

RESUMEN

The yeast Saccharomyces boulardii has been used worldwide as a popular, commercial probiotic, but the basis of its probiotic action remains obscure. It is considered conspecific with budding yeast Saccharomyces cerevisiae, which is generally used in classical food applications. They have an almost identical genome sequence, making the genetic basis of probiotic potency in S. boulardii puzzling. We now show that S. boulardii produces at 37°C unusually high levels of acetic acid, which is strongly inhibitory to bacterial growth in agar-well diffusion assays and could be vital for its unique application as a probiotic among yeasts. Using pooled-segregant whole-genome sequence analysis with S. boulardii and S. cerevisiae parent strains, we succeeded in mapping the underlying QTLs and identified mutant alleles of SDH1 and WHI2 as the causative alleles. Both genes contain a SNP unique to S. boulardii (sdh1 F317Y and whi2 S287*) and are fully responsible for its high acetic acid production. S. boulardii strains show different levels of acetic acid production, depending on the copy number of the whi2 S287* allele. Our results offer the first molecular explanation as to why S. boulardii could exert probiotic action as opposed to S. cerevisiae They reveal for the first time the molecular-genetic basis of a probiotic action-related trait in S. boulardii and show that antibacterial potency of a probiotic microorganism can be due to strain-specific mutations within the same species. We suggest that acquisition of antibacterial activity through medium acidification offered a selective advantage to S. boulardii in its ecological niche and for its application as a probiotic.


Asunto(s)
Ácido Acético/metabolismo , Sitios de Carácter Cuantitativo , Saccharomyces boulardii/crecimiento & desarrollo , Secuenciación Completa del Genoma/métodos , Antibacterianos/metabolismo , Variaciones en el Número de Copia de ADN , Calor , Polimorfismo de Nucleótido Simple , Probióticos/metabolismo , Saccharomyces boulardii/genética , Saccharomyces boulardii/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Succinato Deshidrogenasa/genética
5.
Sci Rep ; 8(1): 3958, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500393

RESUMEN

Multi-resistant microorganisms continue to challenge medicine and fuel the search for new antimicrobials. Here we show that essential oils and their components are a promising class of antifungals that can have specific anti-Candida activity via their vapour-phase. We quantify the vapour-phase-mediated antimicrobial activity (VMAA) of 175 essential oils and 37 essential oil components, representing more than a 1,000 unique molecules, against C. albicans and C. glabrata in a novel vapour-phase-mediated susceptibility assay. Approximately half of the tested essential oils and their components show growth-inhibitory VMAA. Moreover, an average greater activity was observed against the intrinsically more resistant C. glabrata, with essential oil component citronellal having a highly significant differential VMAA. In contrast, representatives of each class of antifungals currently used in clinical practice showed no VMAA. The vapour-phase-mediated susceptibility assay presented here thus allows for the simple detection of VMAA and can advance the search for novel (applications of existing) antimicrobials. This study represents the first comprehensive characterisation of essential oils and their components as a unique class of antifungals with antimicrobial properties that differentiate them from existing antifungal classes.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Gases , Aceites Volátiles/farmacología , Cromatografía de Gases y Espectrometría de Masas/métodos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Prueba de Estudio Conceptual , Microextracción en Fase Sólida/métodos , Volatilización
6.
Nat Commun ; 8: 14247, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165463

RESUMEN

Sulfate is a well-established sulfur source for fungi; however, in soils sulfonates and sulfate esters, especially choline sulfate, are often much more prominent. Here we show that Saccharomyces cerevisiae YIL166C(SOA1) encodes an inorganic sulfur (sulfate, sulfite and thiosulfate) transporter that also catalyses sulfonate and choline sulfate uptake. Phylogenetic analysis of fungal SOA1 orthologues and expression of 20 members in the sul1Δ sul2Δ soa1Δ strain, which is deficient in inorganic and organic sulfur compound uptake, reveals that these transporters have diverse substrate preferences for sulfur compounds. We further show that SOA2, a S. cerevisiae SOA1 paralogue found in S. uvarum, S. eubayanus and S. arboricola is likely to be an evolutionary remnant of the uncharacterized open reading frames YOL163W and YOL162W. Our work highlights the importance of sulfonates and choline sulfate as sulfur sources in the natural environment of S. cerevisiae and other fungi by identifying fungal transporters for these compounds.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Compuestos de Azufre/farmacocinética , Transporte Biológico , Proteínas de Transporte de Membrana/química , Filogenia , Proteínas de Saccharomyces cerevisiae/genética , Suelo/química , Especificidad por Sustrato , Compuestos de Azufre/química
7.
Biochem J ; 455(3): 295-306, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23924367

RESUMEN

Accumulation of aggregated forms of αSyn (α-synuclein) into Lewy bodies is a known hallmark associated with neuronal cell death in Parkinson's disease. When expressed in the yeast Saccharomyces cerevisiae, αSyn interacts with the plasma membrane, forms inclusions and causes a concentration-dependent growth defect. We have used a yeast mutant, cog6Δ, which is particularly sensitive to moderate αSyn expression, for screening a mouse brain-specific cDNA library in order to identify mammalian proteins that counteract αSyn toxicity. The mouse ribosomal and chaperone protein RPS3A was identified as a suppressor of αSyn [WT (wild-type) and A53T] toxicity in yeast. We demonstrated that the 50 N-terminal amino acids are essential for this function. The yeast homologues of RPS3A were not effective in suppressing the αSyn-induced growth defect, illustrating the potential of our screening system to identify modifiers that would be missed using yeast gene overexpression as the first screening step. Co-expression of mouse RPS3A delayed the formation of αSyn-GFP inclusions in the yeast cells. The results of the present study suggest that the recently identified extraribosomal chaperonin function of RPS3A also acts on the neurodegeneration-related protein αSyn and reveal a new avenue for identifying promising candidate mammalian proteins involved in αSyn functioning.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Animales , Mamíferos , Ratones , Chaperonas Moleculares/metabolismo , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética
8.
Microbiology (Reading) ; 156(Pt 10): 3021-3030, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20595260

RESUMEN

Ribosome-inactivating proteins (RIPs) are cytotoxic N-glycosidases identified in numerous plants, but also constitute a subunit of the bacterial Shiga toxin. Classification of plant RIPs is based on the absence (type I) or presence (type II) of an additional lectin module. In Shiga toxin, sugar binding is mediated by a distinct RIP-associated homopentamer. In the genome of two actinomycetes, we identified RIP-like proteins that resemble plant type I RIPs rather than the RIP subunit (StxA) of Shiga toxin. Some representatives of ß- and γ-proteobacteria also contain genes encoding RIP-like proteins, but these are homologous to StxA. Here, we describe the isolation and initial characterization of the RIP-like gene product SCO7092 (RIPsc) from the Gram-positive soil bacterium Streptomyces coelicolor. The ripsc gene was expressed in Escherichia coli as a recombinant protein of about 30 kDa, and displayed the characteristic N-glycosidase activity causing specific rRNA depurination. In Streptomyces lividans and E. coli, RIPsc overproduction resulted in a dramatic decrease in the growth rate. In addition, intracellular production was deleterious for Saccharomyces cerevisiae. However, when applied externally to microbial cells, purified RIPsc did not display antibacterial or antifungal activity, suggesting that it cannot enter these cells. In a cell-free system, however, purified S. coelicolor RIPsc protein displayed strong inhibitory activity towards protein translation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Inactivadoras de Ribosomas/metabolismo , Streptomyces coelicolor/genética , Animales , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Glicósido Hidrolasas/metabolismo , Biosíntesis de Proteínas , Conejos , Reticulocitos/metabolismo , Proteínas Inactivadoras de Ribosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Streptomyces coelicolor/crecimiento & desarrollo , Streptomyces coelicolor/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...