Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Zool A Ecol Integr Physiol ; 337(2): 150-158, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34516707

RESUMEN

With rapid climate change, heat wave episodes have become more intense and more frequent. This poses a significant threat to animals, and forces them to manage these physiologically challenging conditions by adapting and/or moving. As an invasive species with a large niche breadth, House sparrows (Passer domesticus) exhibit high phenotypic flexibility that caters to seasonal changes in function and metabolism. For example, their pectoral muscle complex exhibits size and mass plasticity with winter and summer acclimation. Here, we investigated the effects of acute whole-organism heat stress to 43°C on cellular-level changes in House sparrow pectoralis muscle myonuclear domain (MND), the volumetric portion each nucleus is responsible for, that have gone overlooked in the current literature. House sparrows were separated into a control group, a heat-shocked group subjected to thermal stress at 43°C for 24 h, and a recovery group that was returned to room temperature for 24 h after experiencing the same temperature treatment. Here, we found that heat-shocked and recovery groups demonstrated a decrease in number of nuclei per millimeter of fiber and increase in MND, when compared with the control. We also found a significant positive correlation between fiber diameter and MND in the recovery group, suggesting the possibility that nuclei number constrains the extent of muscle fiber size. Together, these results show that acute heat shock alters House sparrow pectoralis muscle cellular physiology in a rigid way that could prove detrimental to long-term muscle integrity and performance.


Asunto(s)
Gorriones , Aclimatación , Animales , Fibras Musculares Esqueléticas , Músculos Pectorales , Gorriones/fisiología , Temperatura
2.
J Therm Biol ; 100: 103050, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34503797

RESUMEN

Efforts to determine physiological traits that may render species resilient or susceptible to changing global temperatures have accelerated in recent years. Temperature is of critical importance to biological function; thus, climate change has the potential to severely affect all levels of biological organization in many species. For example, increases in environmental temperatures may alter muscle structure and function in birds. Myonuclear domain (MND), an under-studied aspect of avian muscle physiology that changes in response to thermal stress, is defined as the amount of cytoplasm within a muscle fiber that each nucleus is responsible for servicing. Here, we used two random bred lines of Japanese quail (Coturnix japonica) representing examples of control and fast growth rates. We used a factorial design to administer four treatment combinations to each line - an initial period of either heat-stress acclimation (Acclimation) or no acclimation (Not acclimated) followed by either a heat-stress challenge (HS) or no challenge (NC) after week 8 of age - to determine the effects of thermal acclimation and acute thermal stress on quail MND. We found a significant interaction between line * final treatment with fast-growing, HS birds demonstrating the lowest numbers of nuclei per mm of fiber, and Acclimated control-growing birds showing the highest numbers of nuclei per mm of fiber. There was a significant effect of line on MND with the fast-growing line having larger MNDs. Initial treatment with Not Acclimated birds showed larger MNDs. Additionally, control growing quail demonstrated positive correlations with fiber size, whereas fast growing quail did not. This may mean that nuclei in larger fibers of fast-growing quail may be functioning maximally, and that increases in temperature may also demonstrate similar effects.


Asunto(s)
Respuesta al Choque Térmico , Fibras Musculares Esqueléticas/metabolismo , Codorniz/metabolismo , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Rasgos de la Historia de Vida , Codorniz/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA