Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
NPJ Biofilms Microbiomes ; 9(1): 39, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37328504

RESUMEN

Staphylococcus aureus is considered a high priority pathogen by the World Health Organization due to its high prevalence and the potential to form biofilms. Currently, the available treatments for S. aureus biofilm-associated infections do not target the extracellular polymeric substances (EPS) matrix. This matrix is a physical barrier to bactericidal agents, contributing to the increase of antimicrobial tolerance. The present work proposes the development of lipid nanoparticles encapsulating caspofungin (CAS) as a matrix-disruptive nanosystem. The nanoparticles were functionalized with D-amino acids to target the matrix. In a multi-target nano-strategy against S. aureus biofilms, CAS-loaded nanoparticles were combined with a moxifloxacin-loaded nanosystem, as an adjuvant to promote the EPS matrix disruption. In vitro and in vivo studies showed biofilm reduction after combining the two nanosystems. Besides, the combinatory therapy showed no signs of bacterial dissemination into vital organs of mice, while dissemination was observed for the treatment with the free compounds. Additionally, the in vivo biodistribution of the two nanosystems revealed their potential to reach and accumulate in the biofilm region, after intraperitoneal administration. Thus, this nano-strategy based on the encapsulation of matrix-disruptive and antibacterial agents is a promising approach to fight S. aureus biofilms.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Ratones , Distribución Tisular , Biopelículas , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/química
2.
Pharmaceutics ; 14(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365113

RESUMEN

Bacterial biofilms of Staphylococcus aureus, formed on implants, have a massive impact on the increasing number of antimicrobial resistance cases. The current treatment for biofilm-associated infections is based on the administration of antibiotics, failing to target the biofilm matrix. This work is focused on the development of multiple lipid nanoparticles (MLNs) encapsulating the antibiotic moxifloxacin (MOX). The nanoparticles were functionalized with d-amino acids to target the biofilm matrix. The produced formulations exhibited a mean hydrodynamic diameter below 300 nm, a low polydispersity index, and high encapsulation efficiency. The nanoparticles exhibited low cytotoxicity towards fibroblasts and low hemolytic activity. To target bacterial cells and the biofilm matrix, MOX-loaded MLNs were combined with a nanosystem encapsulating a matrix-disruptive agent: N-acetyl-L-cysteine (NAC). The nanosystems alone showed a significant reduction of both S. aureus biofilm viability and biomass, using the microtiter plate biofilm model. Further, biofilms grown inside polyurethane catheters were used to assess the effect of combining MOX-loaded and NAC-loaded nanosystems on biofilm viability. An increased antibiofilm efficacy was observed when combining the functionalized MOX-loaded MLNs and NAC-loaded nanosystems. Thus, nanosystems as carriers of bactericidal and matrix-disruptive agents are a promising combinatory strategy towards the eradication of S. aureus biofilms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...