Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 12(50): 32775-32783, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36425693

RESUMEN

This study presents a novel method for the detection and quantification of atmospheric corrosion products on carbon steel. Using hyperspectral imaging (HSI) in the short-wave infrared range (SWIR) (900-1700 nm), we are able to identify the most common corrosion minerals such as: α-FeO(OH) (goethite), γ-FeO(OH) (lepidocrocite), and γ-Fe2O3 (maghemite). Six carbon steel samples were artificially corroded in a salt spray chamber, each sample with a different duration (between 1 h and 120 hours). These samples were analysed by scanning X-ray diffraction (XRD) and also using a SWIR HSI system. The XRD data is used as baseline data. A random forest regression algorithm is used for training on the combined XRD and HSI data set. Using the trained model, we can predict the abundance map based on the HSI images alone. Several image correlation metrics are used to assess the similarity between the original XRD images and the HSI images. The overall abundance is also calculated and compared for XRD and HSI images. The analysis results show that we are able to obtain visually similar images, with error rates ranging from 3.27 to 13.37%. This suggests that hyperspectral imaging could be a viable tool for the study of corrosion minerals.

2.
Sensors (Basel) ; 22(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35009949

RESUMEN

In this study, we propose a new method to identify corrosion minerals in carbon steel using hyperspectral imaging (HSI) in the shortwave infrared range (900-1700 nm). Seven samples were artificially corroded using a neutral salt spray test and examined using a hyperspectral camera. A normalized cross-correlation algorithm is used to identify four different corrosion minerals (goethite, magnetite, lepidocrocite and hematite), using reference spectra. A Fourier Transform Infrared spectrometer (FTIR) analysis of the scraped corrosion powders was used as a ground truth to validate the results obtained by the hyperspectral camera. This comparison shows that the HSI technique effectively detects the dominant mineral present in the samples. In addition, HSI can also accurately predict the changes in mineral composition that occur over time.

3.
Materials (Basel) ; 14(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209551

RESUMEN

In this article, we report the use of a Confocal Laser Scanning Microscope (CLSM) to apply a qualitative assessment of atmospheric corrosion on steel samples. From the CLSM, we obtain high-resolution images, together with a 3D heightmap. The performance of four different segmentation algorithms that use the high-resolution images as input is qualitatively assessed and discussed. A novel 3D segmentation algorithm based on the shape index is presented and compared to the 2D segmentation algorithms. From this analysis, we conclude that there is a significant difference in performance between the 2D segmentation algorithms and that the 3D method can be an added value to the detection of corrosion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...