Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Rev Sci Tech ; 38(1): 303-314, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31564720

RESUMEN

Under the International Health Regulations (IHR, 2005), a legally binding document adopted by 196 States Parties, countries are required to develop their capacity to rapidly detect, assess, notify and respond to unusual health events of potential international concern. To support countries in monitoring and enhancing their capacities and complying with the IHR (2005), the World Health Organization (WHO) developed the IHR Monitoring and Evaluation Framework (IHR MEF). This framework comprises four complementary components: the State Party Annual Report, the Joint External Evaluation, after-action reviews and simulation exercises. The first two are used to review capacities and the second two to help to explore their functionality. The contribution of different disciplines, sectors, and areas of work, joining forces through a One Health approach, is essential for the implementation of the IHR (2005). Therefore, WHO, in partnership with the Food and Agriculture Organization of the United Nations (FAO), the World Organisation for Animal Health (OIE), and other international and national partners, has actively worked on facilitating the inclusion of the relevant sectors, in particular the animal health sector, in each of the four components of the IHR MEF. Other tools complement the IHR MEF, such as the WHO/OIE IHR-PVS [Performance of Veterinary Services] National Bridging Workshops, which facilitate the optimal use of the results of the IHR MEF and the OIE Performance of Veterinary Services Pathway and create an opportunity for stakeholders from animal health and human health services to work on the coordination of their efforts. The results of these various tools are used in countries' planning processes and are incorporated in their National Action Plan for Health Security to accelerate the implementation of IHR core capacities. The present article describes how One Health is incorporated in all components of the IHR MEF.


En vertu du Règlement sanitaire international (RSI, 2005), instrument juridique ayant force obligatoire pour les 196 États Parties dans le monde, les pays s'engagent à renforcer leurs capacités de détection, d'évaluation, de notification et de réaction en cas d'événements sanitaires inhabituels ou présentant une dimension internationale inquiétante. Le Cadre de suivi et d'évaluation du RSI (2005) a été élaboré par l'Organisation mondiale de la santé (OMS) afin de soutenir les pays souhaitant évaluer et améliorer leurs capacités et leur niveau de conformité avec le RSI (2005). Ce cadre comprend quatre composantes complémentaires : le rapport annuel de l'État Partie, l'Évaluation extérieure conjointe, les examens « après action¼ et les exercices de simulation. Les deux premières composantes permettent de faire le point sur les capacités tandis que les deux dernières visent une connaissance détaillée de leur fonctionnement. La mise en oeuvre du RSI (2005) demande aux différentes disciplines, secteurs et domaines d'activités de fédérer leurs forces dans une approche Une seule santé. Par conséquent, en partenariat avec l'Organisation des Nations Unies pour l'alimentation et l'agriculture (FAO), avec l'Organisation mondiale de la santé animale (OIE) et avec d'autres partenaires internationaux et nationaux, l'OMS a fait en sorte de faciliter l'intégration de tous les secteurs concernés, en particulier celui de la santé animale, dans les diverses composantes du Cadre d'évaluation du RSI. D'autres outils complètent celui-ci, en particulier les ateliers de liaison nationaux OMS/OIE sur le RSI et le Processus d'évaluation des performances des Services vétérinaires (PVS), dont le but est de faciliter l'utilisation optimale des résultats du Cadre d'évaluation du RSI et du Processus PVS de l'OIE et de fournir aux acteurs des services de santé animale et de santé publique la possibilité de se concerter sur les modalités d'une synergie de leur action. Les résultats de ces outils sont ensuite pris en compte par les pays lors des procédures de planification et intégrés dans les Plans d'action nationaux pour la sécurité sanitaire afin d'accélérer la mise en oeuvre des capacités fondamentales décrites dans le RSI. Les auteurs décrivent l'intégration du concept Une seule santé dans chacune des composantes du Cadre d'évaluation du RSI.


Según lo dispuesto en el Reglamento Sanitario Internacional (RSI, 2005), documento jurídicamente vinculante suscrito por 196 Estados Partes, los países están obligados a dotarse de la capacidad necesaria para detectar, evaluar, notificar y afrontar con rapidez todo evento sanitario inusual que pueda revestir importancia internacional. Para ayudar a los países a dotarse de mejores capacidades, a seguir de cerca su evolución al respecto y a dar cumplimiento al RSI (2005), la Organización Mundial de la Salud (OMS) elaboró el marco de seguimiento y evaluación del RSI, que consta de cuatro elementos complementarios: el informe anual que debe presentar cada Estado Parte; la evaluación externa conjunta; exámenes posteriores a las intervenciones; y ejercicios de simulación. Los dos primeros sirven para examinar las capacidades, y los dos segundos para ayudar a estudiar su funcionalidad. Para la aplicación del RSI (2005) es fundamental la contribución de diferentes disciplinas, sectores y ámbitos de trabajo, que aúnen esfuerzos actuando desde los postulados de Una sola salud. Por ello la OMS, en colaboración con la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), la Organización Mundial de Sanidad Animal (OIE) y otros asociados internacionales y nacionales, ha trabajado activamente para facilitar la integración de los sectores pertinentes, en particular el de la sanidad animal, en cada uno de los cuatro componentes del marco de seguimiento y evaluación del RSI. Hay otros dispositivos que vienen a complementar este marco, por ejemplo los talleres nacionales dedicados a la creación de nexos entre el RSI y el proceso PVS (Prestaciones de los Servicios Veterinarios) de la OIE, organizados conjuntamente por la OMS y la OIE, que facilitan un uso idóneo de los resultados del marco de seguimiento y evaluación del RSI y del proceso PVS y brindan a las partes interesadas de los servicios sanitarios y zoosanitarios la oportunidad de trabajar sobre la coordinación de sus respectivas actividades. Los resultados de estas diversas herramientas alimentan después los procesos de planificación de los países y son incorporados a su Plan de acción nacional de seguridad sanitaria para acelerar la implantación de las capacidades básicas prescritas en el RSI. Los autores explican cómo se incorpora la filosofía de Una sola salud a todos los componentes del marco de seguimiento y evaluación del RSI.


Asunto(s)
Reglamento Sanitario Internacional , Salud Única , Animales , Brotes de Enfermedades/prevención & control , Salud Global , Humanos , Cooperación Internacional , Salud Única/normas , Organización Mundial de la Salud
2.
Rev Sci Tech ; 38(1): 71-89, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31564739

RESUMEN

Multisectoral, One Health collaboration is essential for addressing national and international health threats that arise at the human-animal-environment interface. Thanks to the efforts of multiple organisations, countries now have an array of One Health tools available to assess capacities within and between sectors, plan and prioritise activities, and strengthen multisectoral, One Health coordination, communication, and collaboration. By doing so, they are able to address health threats at the human-animal-environment interface, including emerging zoonotic and infectious diseases, more efficiently. However, to ensure optimal outcomes for the countries using these One Health tools, the partners responsible for implementation should regularly collaborate and share information such as implementation timelines, results and lessons learned, so that one process can inform the next. This paper presents a consensus framework on how commonly implemented One Health tools might align to best support countries in strengthening One Health systems. Twelve One Health tools were selected based on their high implementation rates, authors' experience with these tools and their focus on multisectoral, One Health coordination. Through a four-step process, the authors: a) jointly carried out a landscape analysis of One Health tools, using a Cloudbased spreadsheet to share the unique characteristics and applications of each tool; b) performed an implementation analysis to identify and share implementation dynamics and identify respective outcomes and synergies; c) jointly created a consensus conceptual model of how the authors suggest the tools might logically work together; and d) extrapolated from steps 1-3 an agreed-upon overarching conceptual framework for how current and future One Health tools could be categorised to best support One Health system strengthening at the national level. Highlighted One Health tools include the States Parties Annual Reporting Tool under the International Health Regulations (IHR), the World Organisation for Animal Health Performance of Veterinary Services (PVS) Pathway, the Joint External Evaluation process, IHR/PVS National Bridging Workshops, the Centers for Disease Control and Prevention One Health Zoonotic Disease Prioritization Tool, the Food and Agriculture Organization (FAO) Laboratory Mapping Tool, the FAO Assessment Tool for Laboratories and Antimicrobial Resistance Surveillance Systems, the FAO Surveillance Evaluation Tool, the One Health Systems Mapping and Analysis Resource Toolkit, the National Action Plan for Health Security, and IHR Monitoring and Evaluation Framework tools for After Action Reviews and Simulation Exercises. A new guidance document entitled, Taking a Multisectoral, One Health Approach: A Tripartite Guide to Addressing Zoonotic Diseases in Countries was also included as a framework that provides guidance to support the implementation of the outputs of the tools described.


La collaboration multisectorielle suivant l'approche Une seule santé est essentielle pour répondre aux menaces sanitaires survenant à l'interface homme­animal­ environnement à l'échelle nationale et internationale. Grâce aux efforts conjugués de nombreuses organisations, les pays disposent désormais d'une gamme d'outils Une seule santé permettant à la fois d'évaluer les capacités intra et intersectorielles, de planifier et prioriser les activités, et de renforcer la coordination, la communication et la collaboration multisectorielles suivant cette approche. Grâce à ces outils, les pays sont mieux armés pour faire face avec efficacité aux menaces sanitaires à l'interface homme­animal­environnement, en particulier celles liées aux maladies zoonotiques et infectieuses émergentes. Néanmoins, pour optimiser les retombées pour les pays du recours aux outils Une seule santé, les partenaires chargés de leur mise en oeuvre devraient régulièrement collaborer et partager leurs informations, notamment le calendrier de mise en oeuvre, les résultats obtenus et les enseignements tirés, afin que chaque processus contribue à l'amélioration des suivants. Les auteurs présentent un cadre consensuel sur la manière dont les outils Une seule santé les plus courants peuvent converger afin d'aider le mieux possible les pays à renforcer leurs systèmes basés sur cette approche. Douze outils ont été choisis en fonction de leur fréquence d'utilisation, de l'expérience acquise par les auteurs et de l'accent mis sur la coordination multisectorielle Une seule santé. Les auteurs ont ensuite procédé à un examen en quatre étapes, comme suit : a) analyse générale des outils sélectionnés, au moyen d'un tableur sur serveur dématérialisé permettant de saisir et de partager les caractéristiques et les applications spécifiques de chaque outil ; b) analyse de la mise en oeuvre des outils, visant à déterminer et à partager la dynamique et les caractéristiques de mise en oeuvre, ainsi que les résultats respectifs et les synergies qui en ressortent ; c) création d'un modèle conceptuel consensuel contenant les propositions des auteurs en vue d'une convergence raisonnée des fonctionnalités de ces outils ; d) à partir des trois étapes précédentes, conception d'un cadre conceptuel transversal destiné à catégoriser les outils Une seule santé actuels et futurs afin d'apporter un soutien optimal au renforcement des systèmes Une seule santé à l'échelle des pays. Parmi les outils examinés figurent l'Outil d'autoévaluation pour l'établissement de rapports annuels par les États Parties de l'Organisation mondiale de la santé (OMS), qui concerne l'application du Règlement sanitaire international (RSI) ; le Processus sur les Performances des Services vétérinaires (PVS) de l'Organisation mondiale de la santé animale (OIE) ; le processus d'Évaluation extérieure conjointe ; les ateliers nationaux de liaison RSI/PVS ; l'outil Une seule santé de priorisation des maladies zoonotiques des Centres pour le contrôle et la prévention des maladies (CDC) ; l'Outil de cartographie des laboratoires de l'Organisation des Nations Unies pour l'alimentation et l'agriculture (FAO) ; l'Outil d'évaluation de la FAO pour les laboratoires et les systèmes de surveillance de l'antibiorésistance ; l'Outil d'évaluation de la FAO sur la surveillance ; la Boîte à outils cartographiques et analytiques sur les systèmes Une seule santé ; les Plans d'action nationaux de sécurité sanitaire ; et enfin les outils d'examen après action et protocoles de simulation du Cadre de suivi et d'évaluation du RSI. Le document d'orientation récemment publié sous le titre Taking a multisectoral One Health approach: a Tripartite guide to addressing zoonotic diseases in countries [Adopter une approche multisectorielle Une seule santé : Guide tripartite pour lutter contre les maladies zoonotiques] est également présenté, en tant qu'il fournit un cadre directeur en appui de la mise en oeuvre des résultats des outils d'évaluation ci-dessus.


La colaboración multisectorial en clave de Una sola salud es esencial para responder a las amenazas sanitarias de dimensión nacional e internacional que surgen en la confluencia de personas, animales y medio ambiente. Gracias al trabajo de numerosas organizaciones, los países disponen ahora de un repertorio de herramientas concebidas desde la óptica de Una sola salud para evaluar las capacidades existentes dentro de los sectores y entre ellos, planificar y jerarquizar actividades y potenciar las labores de coordinación, comunicación y colaboración multisectoriales en clave de Una sola salud. Gracias a todo ello, los países están en condiciones de luchar más eficazmente contra las amenazas sanitarias en la interfaz de personas, animales y medio ambiente, en particular las enfermedades infecciosas y zoonóticas emergentes. No obstante, para que los países obtengan resultados óptimos del uso de estas herramientas de Una sola salud es preciso que los distintos colaboradores encargados de aplicarlas colaboren e intercambien información periódicamente, por ejemplo sobre plazos de ejecución, resultados obtenidos y enseñanzas extraídas, de tal manera que un proceso pueda alimentar el siguiente. Los autores presentan un conjunto de principios consensuados sobre el modo en que cabría armonizar entre sí las herramientas de Una sola salud utilizadas con frecuencia para que los países cuenten con un apoyo idóneo a la hora de fortalecer los sistemas de Una sola salud. Ante todo, los autores seleccionaron doce de esas herramientas atendiendo a su (elevado) nivel de utilización, la experiencia de los propios autores con ellas y la medida en que privilegian la coordinación multisectorial en clave de Una sola salud. Después, siguiendo un proceso en cuatro etapas: a) efectuaron colectivamente un análisis general de las herramientas existentes, empleando una hoja de cálculo situada en la «nube¼ para poner en común las características y aplicaciones únicas de cada herramienta; b) analizaron la utilización práctica de esas herramientas de Una sola salud para dilucidar y poner en común la dinámica de aplicación de cada una y determinar sus respectivos resultados y sinergias; c) elaboraron de forma concertada un modelo teórico del modo en que, a su juicio, sería lógico que las herramientas funcionaran conjuntamente; y d) a partir de los pasos 1 a 3, extrapolaron consensuadamente un marco teórico global con el que se podrían clasificar las herramientas de Una sola salud, actuales y futuras, para prestar un apoyo idóneo al fortalecimiento del sistema de Una sola salud en cada país. Las herramientas de Una sola salud seleccionadas son: el instrumento de evaluación para la presentación anual de informes de los Estados Partes que forma parte del Reglamento Sanitario Internacional (RSI); el proceso PVS (Prestaciones de los Servicios Veterinarios) de la Organización Mundial de Sanidad Animal (OIE); la herramienta de evaluación externa conjunta del RSI; los talleres nacionales de coordinación RSI-PVS; la herramienta de jerarquización de enfermedades zoonóticas en clave de Una sola salud de los Centros para el Control y la Prevención de Enfermedades (CDC); la herramienta de inventario de laboratorios de la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO); la herramienta de evaluación de laboratorios y sistemas de vigilancia de las resistencias a los antimicrobianos de la FAO; la herramienta de evaluación de la vigilancia de la FAO; el juego de herramientas y material de análisis y cartografía de los sistemas de Una sola salud; los planes de acción nacional de seguridad sanitaria de la OMS; las herramientas del marco de seguimiento y evaluación del RSI para la realización de exámenes posteriores a la acción y ejercicios de simulación. También se incluyó una nueva guía de la Tripartita para combatir las enfermedades zoonóticas en los países desde la lógica multisectorial de Una sola salud (Taking a multisectoral One Health approach: a Tripartite guide to addressing zoonotic diseases in countries), en el cual se ofrecen pautas para secundar la aplicación en la práctica de los resultados obtenidos con las citadas herramientas.


Asunto(s)
Control de Enfermedades Transmisibles , Salud Única , Zoonosis , Animales , Humanos , Cooperación Internacional , Colaboración Intersectorial , Laboratorios , Zoonosis/prevención & control
3.
Rev Sci Tech ; 36(2): 711-720, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30152449

RESUMEN

The ability to minimise the harmful impact of biological threats relies on our capacity to rapidly detect unusual events, including the accidental or deliberate release of pathogenic or toxic agents, and immediately implement control measures. The development of this capacity for each country is the aim of the International Health Regulations (IHR) (2005), a legally binding document adopted by 196 States Parties, including all Member States of the World Health Organization (WHO). Each country's animal health sector contributes to the implementation of the IHR through surveillance, disease reporting and its response to zoonotic diseases, foodborne diseases and other events that emerge at the interface between human and animal health. The World Organisation for Animal Health (OIE) Performance of Veterinary Services (PVS) Pathway allows countries to undertake a comprehensive evaluation of their Veterinary Services and identify areas that need improvement. The OIE and WHO have conducted an in-depth analysis of the differences and synergies between the tools used by WHO to monitor the implementation of the IHR and the OIE PVS Pathway, revealing a wide range of similarities, complementarities and synergies. Taking advantage of the outcomes and outputs from the assessment and gap analysis tools used in the IHR Monitoring Framework and the OIE PVS Pathway, and exploiting the strength of these institutional frameworks, WHO and the OIE have jointly developed methods to facilitate communication between the animal health and human health sectors. This enhanced dialogue improves operational coordination and more efficiently informs policy-makers on strategic investments to strengthen their preparedness for controlling the spread of zoonotic diseases.


La faculté de minimiser l'impact néfaste des menaces biologiques dépend de la capacité des pays à détecter rapidement tout événement inhabituel, en particulier la dissémination accidentelle ou délibérée d'agents pathogènes ou toxiques, et à mettre en œuvre des mesures immédiates pour maîtriser ces événements. Le Règlement sanitaire international (RSI) (2005), un document juridiquement contraignant adopté par les 196 États parties, dont les États membres de l'Organisation mondiale de la santé (OMS) a précisément pour objectif de développer cette capacité dans chaque pays. Le secteur de la santé animale d'un pays participe à la mise en œuvre du RSI à travers une surveillance appropriée, la notification des maladies et l'adoption de mesures en cas de zoonoses, de maladies d'origine alimentaire et de tout autre événement émergeant à l'interface entre la santé humaine et la santé animale. Le Processus relatif aux performances des Services vétérinaires (Processus PVS) de l'Organisation mondiale de la santé animale (OIE) fournit aux pays la possibilité d'entreprendre une évaluation complète de leurs Services vétérinaires et d'identifier les domaines susceptibles d'être améliorés. L'OIE et l'OMS ont analysé de manière approfondie les différences et les synergies entre les outils utilisés par l'OMS pour vérifier la mise en œuvre du RSI, d'une part, et le Processus PVS de l'OIE, d'autre part, ce qui a mis en lumière de nombreuses similitudes, complémentarités et synergies. Sur la base des résultats et des données produites par les outils d'évaluation et d'analyse des écarts du Cadre de suivi du RSI et du Processus PVS de l'OIE, l'OMS et l'OIE ont exploité la puissance de ces cadres institutionnels pour mettre au point conjointement des méthodes visant à améliorer la communication entre les secteurs de la santé animale et de la santé humaine. Ce dialogue renforcé a pour effets d'améliorer la coordination opérationnelle et d'informer plus efficacement les décideurs politiques sur les investissements stratégiques permettant de mettre en place les conditions de préparation nécessaires pour lutter contre la propagation des zoonoses.


La aptitud de reducir al mínimo los efectos perjudiciales de las amenazas biológicas depende de nuestra capacidad para detectar con rapidez episodios inusuales, como la liberación accidental o deliberada de agentes patógenos o tóxicos, e instituir de inmediato medidas de control. El Reglamento Sanitario Internacional (RSI) (2005) es un documento jurídicamente vinculante aprobado por 196 Estados Partes, entre ellos todos los Estados Miembros de la Organización Mundial de la Salud (OMS), que precisamente tiene por objetivo dotar de esta capacidad a todos y cada uno de los países. El sector zoosanitario de cada país contribuye a la aplicación del RSI con actividades de vigilancia, notificación de enfermedades y respuesta ante enfermedades zoonóticas, enfermedades de transmisión alimentaria u otros episodios que puedan darse en la interfaz de la salud humana con la sanidad animal. El proceso de evaluación de las prestaciones de los Servicios Veterinarios (Proceso PVS) de la Organización Mundial de la Salud (OIE) sirve a los países para llevar a cabo una evaluación completa de sus Servicios Veterinarios y determinar aquellos ámbitos en que se requieran mejoras. La OIE y la OMS han analizado a fondo las diferencias y sinergias existentes entre las herramientas que utiliza la OMS para seguir de cerca la aplicación del RSI y el Proceso PVS de la OIE, labor que ha puesto de relieve un buen número de semejanzas, sinergias y aspectos complementarios de diversa índole. Partiendo de los resultados y productos que deparan las herramientas de evaluación y análisis de carencias utilizadas en el Marco de seguimiento del RSI y el Proceso PVS de la OIE, y aprovechando la solidez de estos marcos institucionales, la OMS y la OIE han definido conjuntamente métodos para facilitar la comunicación entre los sectores de la salud humana y la sanidad animal. La existencia de un diálogo más fluido se traduce en una mejor coordinación operativa y permite informar con más eficacia a los planificadores de las inversiones estratégicas necesarias para reforzar las medidas de preparación destinadas a controlar la propagación de enfermedades zoonóticas.


Asunto(s)
Enfermedades de los Animales/prevención & control , Salud Global/legislación & jurisprudencia , Cooperación Internacional/legislación & jurisprudencia , Legislación Veterinaria , Medicina Veterinaria/normas , Enfermedades de los Animales/epidemiología , Animales , Humanos , Organización Mundial de la Salud
4.
Rev Sci Tech ; 33(2): 555-67, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25707183

RESUMEN

Rift Valley fever (RVF) is a good example of a disease for which a One Health approach can significantly improve the management of outbreaks: RVF is a vector- borne zoonotic disease, its dynamics differ between eco-epidemiological patterns and are modulated by eco-climatic factors. Therefore, collaboration between sectors, disciplines and role players, as well as an understanding of the local epidemiology of the disease, are key prerequisites for proper risk assessment and outbreak control. These principles drove the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) to develop an inter-sectoral strategic approach, with specific actions recommended for each of the four periods in the development of the outbreak (forecasting and preparedness, alert, epidemic control, post-epidemic). Through several outbreak response missions between 2006 and 2012 in various countries, an implementation framework was developed by WHO, FAO and the national authorities of affected countries and used to build national response action plans. The framework proposes a structured attribution of duty and responsibilities to committees made up of representatives of the various institutional and operational role players, and with clear mandates and terms of reference (TOR). Such an approach, ensuring real-time sharing of information, coherence in the various aspects of the response, and ownership of the strategy, has proven its efficiency. It could also be used, with appropriate adjustments in the TOR, for other zoonotic diseases.


Asunto(s)
Control de Enfermedades Transmisibles/organización & administración , Brotes de Enfermedades/prevención & control , Salud Global , Internacionalidad , Fiebre del Valle del Rift/prevención & control , África del Sur del Sahara , Animales , Control de Enfermedades Transmisibles/métodos , Humanos , Fiebre del Valle del Rift/epidemiología , Zoonosis/prevención & control
5.
Rev Sci Tech ; 33(2): 659-68, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25707192

RESUMEN

The One Health approach encompasses multiple themes and can be understood from many different perspectives. This paper expresses the viewpoint of those in charge of responding to public health events of international concern and, in particular, to outbreaks of zoonotic disease. Several international organisations are involved in responding to such outbreaks, including the United Nations (UN) and its technical agencies; principally, the Food and Agriculture Organization of the UN (FAO) and the World Health Organization (WHO); UN funds and programmes, such as the United Nations Development Programme, the World Food Programme, the United Nations Environment Programme, the United Nations Children's Fund; the UN-linked multilateral banking system (the World Bank and regional development banks); and partner organisations, such as the World Organisation for Animal Health (OIE). All of these organisations have benefited from the experiences gained during zoonotic disease outbreaks over the last decade, developing common approaches and mechanisms to foster good governance, promote policies that cut across different sectors, target investment more effectively and strengthen global and national capacities for dealing with emerging crises. Coordination among the various UN agencies and creating partnerships with related organisations have helped to improve disease surveillance in all countries, enabling more efficient detection of disease outbreaks and a faster response, greater transparency and stakeholder engagement and improved public health. The need to build more robust national public human and animal health systems, which are based on good governance and comply with the International Health Regulations (2005) and the international standards set by the OIE, prompted FAO, WHO and the OIE to join forces with the World Bank, to provide practical tools to help countries manage their zoonotic disease risks and develop adequate resources to prevent and control disease outbreaks, particularly at the animal source. All these efforts contribute to the One Health agenda.


Asunto(s)
Salud Global/legislación & jurisprudencia , Internacionalidad , Salud Pública/legislación & jurisprudencia , Naciones Unidas/legislación & jurisprudencia , Animales , Brotes de Enfermedades/prevención & control , Salud Global/normas , Humanos , Salud Pública/normas , Administración en Salud Pública/normas , Naciones Unidas/normas , Zoonosis/prevención & control
6.
East Mediterr Health J ; 19 Suppl 1: S19-25, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23888791

RESUMEN

The detection of a novel coronavirus in patients from the Arabian Peninsula in late 2012 raised serious concerns of a possible international outbreak. Ministries of health of the three affected countries invited missions from the World Health Organization to participate in a review of data and capacity to detect and respond to further cases. Recommendations were made for investigations to answer critical questions about human-to-human transmission and the geographic extent of the virus. Additional recommendations were made to improve surveillance capacity by acquiring the capacity to test for the virus and enhance syndromic surveillance. Available evidence continues to suggest an unknown animal reservoir for the virus with sporadic zoonotic transmission the primary epidemiological pattern of transmission. Human-to-human transmission, while it can occur, does not appear to be sustained in the community.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Coronavirus/aislamiento & purificación , Brotes de Enfermedades , Vigilancia de la Población/métodos , Animales , Infecciones por Coronavirus/transmisión , Humanos , Internacionalidad , Medio Oriente/epidemiología , Organización Mundial de la Salud
7.
(East. Mediterr. health j).
en Inglés | WHO IRIS | ID: who-118442

RESUMEN

The detection of a novel coronavirus in patients from the Arabian Peninsula in late 2012 raised serious concerns of a possible international outbreak. Ministries of health of the three affected countries invited missions from the World Health Organization to participate in a review of data and capacity to detect and respond to further cases. Recommendations were made for investigations to answer critical questions about human-to human transmission and the geographic extent of the virus. Additional recommendations were made to improve surveillance capacity by acquiring the capacity to test for the virus and enhance syndromic surveillance. Available evidence continues to suggest an unknown animal reservoir for the virus with sporadic zoonotic transmission as the primary epidemiological pattern of transmission. Human-to-human transmission, while it can occur, does not appear to be sustained in the community


Asunto(s)
Infecciones por Coronavirus , Síndrome Respiratorio Agudo Grave , Coronavirus
8.
Rev Sci Tech ; 30(1): 119-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21809758

RESUMEN

It is difficult to determine the part that international trade has played in the expansion of vector-borne diseases, because of the multitude of factors that affect the transformation of habitats and the interfaces between vectors and hosts. The introduction of pathogens through trade in live animals or products of animal origin, as well as the arrival of arthropod vectors, is probably quite frequent but the establishment of an efficient transmission system that develops into a disease outbreak remains the exception. In this paper, based on well-documented examples, the authors review the ecological and epidemiological characteristics of vector-borne diseases that may have been affected in their spread and change of distribution by international trade. In addition, they provide a detailed analysis of the risks associated with specific trade routes and recent expansions of vector populations. Finally, the authors highlight the importance, as well as the challenges, of preventive surveillance and regulation. The need for improved monitoring of vector populations and a readiness to face unpredictable epidemiological events are also emphasised, since this will require rapid reaction, not least in the regulatory context.


Asunto(s)
Vectores Artrópodos , Comercio/tendencias , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/transmisión , Internacionalidad , Animales , Humanos
9.
Ecohealth ; 7(2): 226-36, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20686815

RESUMEN

In January 2006, a major cold spell affected Europe, coinciding with an increase of H5N1 influenza virus detected in wild birds, mostly dead mute swans, starting along the River Danube and the Mediterranean coast line. Subsequently H5N1 detections in wild birds were concentrated in central and western parts of Europe, reaching a peak in mid February. We tested the hypothesis that the geographic distribution of these H5N1 infections was modulated by the long-term wintering line, the 0 °C isotherm marking the limit beyond which areas are largely unsuitable for wintering waterfowl. Given the particularly cold 2005-2006 European winter, we also considered the satellite-derived contemporary frost conditions. This brought us to select the long-term maximum rather than the mean January 0 °C isotherm as the best approximation for the 2005-2006 wintering line. Our analysis shows that H5N1 detection sites were closer to the wintering line than would be expected by chance, even when the geographic distribution of water bird wintering sites was accounted for. We argue that partial frost conditions in water bodies are conducive to bird congregation, and this may have enhanced H5N1 transmission and local spread. Because the environmental virus load also would build up in these hot spots, H5N1 virus may have readily persisted during the spring, at least in cooler areas. We conclude that H5N1 introduction, spread, and persistence in Europe may have been enhanced by the cold 2005-2006 winter.


Asunto(s)
Frío , Ecosistema , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Migración Animal , Animales , Aves/virología , Brotes de Enfermedades , Europa (Continente)/epidemiología , Geografía , Gripe Aviar/epidemiología , Modelos Logísticos
10.
Med Vet Entomol ; 22(4): 364-73, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18785934

RESUMEN

This study aims to provide trypanosomiasis-affected countries with standardized datasets and methodologies for mapping the habitat of the tsetse fly (Glossina spp., the disease vector) by customizing and integrating state-of-the-art land cover maps on different spatial scales. Using a combination of inductive and deductive approaches, land cover and fly distribution maps are analysed in a geographic information system (GIS) to estimate the suitability of different land cover units for the three groups (subgenera) of Glossina. All land cover datasets used for and produced by the study comply with the Land Cover Classification System (LCCS). At the continental scale, a strong correlation between land cover and tsetse habitat is found for both the fusca and palpalis groups, whereas a weaker correlation found for the morsitans group may be indicative of less restrictive ecological requirements. At the regional and national levels, thematic aggregation of the multi-purpose Africover datasets yielded high-resolution, standardized land cover maps tailored for tsetse habitat for eight East African countries. The national maps provide remarkable spatial resolution, thematic detail and geographical coverage. They may be applied in subsequent phases of tsetse and trypanosomiasis control projects, including the planning of entomological surveys, actual tsetse control operations and planning for land use in reclaimed areas. The methodology and datasets discussed in the paper may have applications beyond the tsetse and trypanosomiasis issue and may be used with reference to other arthropod vectors, vector-borne and parasitic diseases.


Asunto(s)
Ecosistema , Moscas Tse-Tse/fisiología , África del Sur del Sahara , Animales , Demografía , Control de Insectos , Árboles , Moscas Tse-Tse/clasificación
11.
Rev Sci Tech ; 27(2): 339-54, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18819664

RESUMEN

Climate driven and other changes in landscape structure and texture, plus more general factors, may create favourable ecological niches for emerging diseases. Abiotic factors impact on vectors, reservoirs and pathogen bionomics and their ability to establish in new ecosystems. Changes in climatic patterns and in seasonal conditions may affect disease behaviour in terms of spread pattern, diffusion range, amplification and persistence in novel habitats. Pathogen invasion may result in the emergence of novel disease complexes, presenting major challenges for the sustainability of future animal agriculture at the global level. In this paper, some of the ecological mechanisms underlying the impact of climatic change on disease transmission and disease spread are further described. Potential effects of different climatic variables on pathogens and host population dynamics and distribution are complex to assess, and different approaches are used to describe the underlying epidemiological processes and the availability of ecological niches for pathogens and vectors. The invasion process can disrupt the long-term co-evolution of species. Pathogens adhering to an r-type strategy (e.g. RNA viruses) may be more inclined to encroach on a novel niche resulting from climate change. However, even when linkage between disease dynamics and climate change are relatively strong, there are other factors changing disease behaviour, and these should be accounted for as well. Overall vulnerability of a given ecosystem is a key variable in this regard. The impact of climate-driven changes varies in different parts of the world and in the different agro-climatic zones. Perhaps priority should go to those geographical areas where the integrity of the ecosystem is most severely affected and the adaptability, in terms of robustness and sustainability of response, relatively low.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/prevención & control , Enfermedades Transmisibles Emergentes/veterinaria , Transmisión de Enfermedad Infecciosa/veterinaria , Ecosistema , Enfermedades de los Animales/transmisión , Animales , Biodiversidad , Clima , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/transmisión , Reservorios de Enfermedades/veterinaria , Vectores de Enfermedades , Efecto Invernadero , Dinámica Poblacional , Vigilancia de la Población , Estaciones del Año , Vigilancia de Guardia/veterinaria
12.
Rev Sci Tech ; 27(2): 413-26, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18819669

RESUMEN

Climate change is likely to change the frequency of extreme weather events, such as tropical cyclones, floods, droughts and hurricanes, and may destabilise and weaken the ecosystem services upon which human society depends. Climate change is also expected to affect animal, human and plant health via indirect pathways: it is likely that the geography of infectious diseases and pests will be altered, including the distribution of vector-borne diseases, such as Rift Valley fever, yellow fever, malaria and dengue, which are highly sensitive to climatic conditions. Extreme weather events might then create the necessary conditions for Rift Valley fever to expand its geographical range northwards and cross the Mediterranean and Arabian seas, with an unexpected impact on the animal and human health of newly affected countries. Strengthening global, regional and national early warning systems is crucial, as are co-ordinated research programmes and subsequent prevention and intervention measures.


Asunto(s)
Brotes de Enfermedades/veterinaria , Transmisión de Enfermedad Infecciosa/veterinaria , Efecto Invernadero , Lluvia , Fiebre del Valle del Rift , África/epidemiología , Animales , Ceratopogonidae/crecimiento & desarrollo , Ceratopogonidae/virología , Clima , Demografía , Brotes de Enfermedades/prevención & control , Transmisión de Enfermedad Infecciosa/prevención & control , Europa (Continente)/epidemiología , Humanos , Insectos Vectores/crecimiento & desarrollo , Insectos Vectores/virología , Fiebre del Valle del Rift/epidemiología , Fiebre del Valle del Rift/prevención & control , Fiebre del Valle del Rift/veterinaria , Zoonosis
13.
Bull Soc Pathol Exot ; 101(3): 213-9, 2008 Jun.
Artículo en Francés | MEDLINE | ID: mdl-18681214

RESUMEN

Potential climate driven changes in the epidemiology of human and animal disease are widely discussed and complex to assess. Recent spreads of exotic pathogens or vectors feed speculations; although most of these introductions are mainly linked to the increased worldwide traffic, trade of goods and transportation of animal and human, abiotic factors are known to impact on vectors and pathogens bionomics and their ability to establish in new ecosystems; altogether changes in climatic patterns and in seasonal conditions may affect disease behaviour in term of spread pattern, diffusion range, amplification and persistence in novel habitats. Invasion may result in the emergence of novel disease processes, presenting major challenges for the epidemiologists. In this paper, some of the ecological mechanisms underlying the impact of climatic change on disease transmission and disease spread are further described. Potential effects of different climatic variables on pathogens and hosts population dynamics and distributions are complex to assess and different approaches are used to describe the dynamics in ecological range and the availability of ecological niches for pathogens and vectors. However even when linkage between disease dynamics and climate change are relatively strong, there are always other factors also changing disease behaviour and these should be accounted for as well.


Asunto(s)
Clima , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/transmisión , África/epidemiología , Animales , Vectores de Enfermedades , Ecosistema , Humanos , Leishmaniasis/epidemiología , Leishmaniasis/transmisión , Estaciones del Año
14.
Med Vet Entomol ; 21(1): 65-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17373948

RESUMEN

The main objective of this study was to compare the trapping efficiency of two Alsynite sticky traps (modified Williams and modified Broce) and two phtalogen blue cloth traps (Vavoua and Nzi) to be used in an integrated control programme of Stomoxys spp. (Diptera: Muscidae) on Reunion Island. Mean daily catches of these flies on two dairy farms differed significantly between the four types of trap. The Broce trap was the least efficient and had the lowest specificity for Stomoxys spp. The Vavoua, Nzi and Williams traps performed significantly better but could not be ranked on the basis of the numbers of Stomoxys caught because their respective performances differed between farms. Given the various practical criteria, it is concluded that, as control tools, blue cloth traps (Vavoua and Nzi) have practical advantages over the Williams trap. The Vavoua trap, which is less expensive and easier to use for farmers, seems adequate to complement other methods of fly control on Reunion Island.


Asunto(s)
Control de Insectos/instrumentación , Muscidae , Animales , Geografía , Control de Insectos/normas , Reunión
15.
Med Vet Entomol ; 19(4): 372-8, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16336302

RESUMEN

In Burkina Faso, Glossina palpalis gambiensis Vanderplank and G. tachinoides Westwood (Diptera: Glossinidae) are the main cyclic vectors of trypanosomiasis. The vegetation type along river banks is an important factor determining the distribution and abundance of these tsetse. The following work investigated the relation between the plant species present (including the disturbance level) and tsetse distribution and abundance, using three ecotypes, described by P.C. Morel in 1978. These were the Guinean, Sudano-Guinean and Sudanese gallery forests. In the Mouhoun River basin, these three ecotypes are found successively from upstream to downstream. Berlinia grandiflora, Syzygium guineense and Cola laurifolia and finally Acacia seyal and Mitragyna inermis were the best indicators for the Guinean, Sudano-Guinean and Sudanese gallery forest ecotypes, respectively, as suggested by Morel. However, other species such as Pterocarpus santalinoides and Mimosa pigra were not ecotype specific. Trap catches confirmed that G. palpalis and G. tachinoides are predominant in Guinean and Sudanese gallery forests, respectively, and that both species are well represented in the Sudano-Guinean ecotype. Tsetse densities dropped significantly in disturbed Sudano-Guinean and Sudanese gallery forest sites. However, this was not the case for both species in Guinean or for G. tachinoides in half-disturbed Sudanese gallery forest sites, confirming their high resilience to human-made changes. The importance of a detailed consideration of riverine ecotypes when predicting tsetse densities is discussed.


Asunto(s)
Demografía , Ecosistema , Ambiente , Insectos Vectores/fisiología , Árboles , Moscas Tse-Tse/fisiología , Animales , Burkina Faso , Densidad de Población , Ríos , Especificidad de la Especie , Trypanosoma
16.
Parassitologia ; 47(1): 97-104, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16044678

RESUMEN

The epidemiology of vector-borne diseases is complex due to the variability in the ecology of the different actors involved, i.e. hosts, parasites and vectors. The transmission of African animal trypanosomosis in the West-African savannah region is an excellent example of this complexity: riverine tsetse flies have an heterogeneous distribution along the rivers, depending of suitable habitats, and transmit pathogenic trypanosomes were they use domestic animal as feeding hosts. Contrasting epidemiological situations may thus occur at the local scale, and a broad view of the overall environment is necessary to quantify the interfaces in time and space between hosts and vectors. Geographical Information Systems (GIS) can provide new insight into the study of such complex epidemiological processes. GIS is a powerful technology that has been used mainly in map-making, and an enormous amount of knowledge can be gained simply by geographical data projection. GIS also allows juxtaposition of different types of information, creation of new variables, testing of theories and correlation, and generating of predictive models. The purpose of the present paper is to exemplify the potential application of GIS using a recent study carried out on animal trypanosomosis in a cattle-raising area of Burkina Faso.


Asunto(s)
Ecosistema , Sistemas de Información Geográfica , Parasitología/métodos , Tripanosomiasis Africana/veterinaria , Tripanosomiasis Bovina/epidemiología , África Occidental/epidemiología , Agricultura , Animales , Bovinos , Ambiente , Interacciones Huésped-Parásitos , Insectos Vectores/parasitología , Prevalencia , Ríos , Comunicaciones por Satélite/instrumentación , Estaciones del Año , Árboles , Trypanosoma/fisiología , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/transmisión , Tripanosomiasis Bovina/transmisión , Moscas Tse-Tse/parasitología
17.
Bull Entomol Res ; 95(1): 63-7, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15705216

RESUMEN

The classification of a Landsat Thematic Mapper satellite image helped demonstrate prevailing habitat types and land use intensity in the Volta basin of the Northern Region of Ghana. A geo-referenced data layer comprising the capture results of a cross-sectional survey of Glossina tachinoides Westwood was over-laid on a data layer of habitat types within 500 m of either bank of the Volta river and its tributaries. An evaluation of the relationship between habitat types and the capture results of G. tachinoides suggested a strong preference of G. tachinoides for woodland, followed by shrubland, grassland and flood plains. The findings were used to classify the suitability of habitat types for G. tachinoides as 'high', 'medium' and 'low' and a prediction map for the distribution of G. tachinoides in the entire river network was produced. The usefulness of this method in estimating the potential distribution of G. tachinoides in an area of increasing agricultural expansion is discussed.


Asunto(s)
Moscas Tse-Tse/fisiología , Animales , Demografía , Ecosistema , Ghana , Modelos Biológicos
18.
Comp Immunol Microbiol Infect Dis ; 27(5): 331-41, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15225983

RESUMEN

Remote sensing techniques have greatly contributed to improve our capacity to observe our environment and its processes. For about 15 years, the use of satellite images for epidemiological purposes has been largely promoted to determine diseases distributions and their variations through time. In some circumstances, when diseases are strongly related to environmental data such as climate, vegetation or land-use, radiation values can be included in prediction models. In other cases, remote sensing data provide information for drawing thematic layers involved in the epidemiological processes, which may differ according to the different ecotypes and ecosystems. According to its final goal, the users can choose from the panel of available radiometers with specific characteristics including spatial resolution and frequency of data. In this paper, two examples of major vector-borne diseases, namely Animal Trypanosomosis and Bluetongue, illustrate these applications.


Asunto(s)
Lengua Azul/epidemiología , Métodos Epidemiológicos/veterinaria , Sistemas de Información Geográfica , Tripanosomiasis Bovina/epidemiología , África del Sur del Sahara/epidemiología , Animales , Virus de la Lengua Azul/crecimiento & desarrollo , Bovinos , Ecosistema , Francia/epidemiología , Rumiantes , Trypanosoma brucei brucei/crecimiento & desarrollo
19.
Rev Sci Tech ; 23(2): 535-55, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15702718

RESUMEN

Over the past few decades, the geographical distribution of arthropod-borne zoonoses has dramatically expanded. The influence of human-induced or ecological changes on the risk of disease outbreaks is undeniable. However, few hypotheses have been proposed which address the re-emergence of these diseases, the spread of these viruses to previously uninfected areas and their establishment therein. Host and vector movements play an important role in the dissemination of pathogens, and the ability of these diseases to colonise previously uninfected areas may be explained by the diversity of hosts and vectors, the presence of favourable ecological conditions, and the successful adaptations of vectors or pathogens to new ecosystems. The objective of this paper is to describe the epidemiological processes of the vector-borne diseases Rift Valley fever, West Nile fever, Japanese encephalitis and Crimean-Congo haemorrhagic fever.


Asunto(s)
Vectores de Enfermedades , Salud Global , Interacciones Huésped-Parásitos/fisiología , Virosis/transmisión , Animales , Brotes de Enfermedades , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/transmisión , Encefalitis Japonesa/veterinaria , Geografía , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/transmisión , Fiebre Hemorrágica de Crimea/veterinaria , Humanos , Densidad de Población , Dinámica Poblacional , Fiebre del Valle del Rift/epidemiología , Fiebre del Valle del Rift/transmisión , Fiebre del Valle del Rift/veterinaria , Especificidad de la Especie , Viaje , Virosis/epidemiología , Virosis/veterinaria , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/veterinaria
20.
Vet Ital ; 40(3): 226-31, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-20419669

RESUMEN

Bluetongue (BT) is an arboviral disease that appeared in the Mediterranean in 1998. In France, the principal vector, Culicoides imicola, was detected for the first time in Corsica in October 2000, a few weeks before outbreaks of BT virus serotype 2 (BTV-2). Entomological surveillance was implemented in Corsica and on mainland France in 2002. In Corsica, the aim was to study the population dynamics of C. imicola and other potential vectors. On the coastal mainland, the objective was to survey the introduction of C. imicola. One-night catches per site were performed every three weeks at 12 sites on Corsica and every month at 19 sites on the mainland. In Corsica, 84,790 Culicoides belonging to 50 species were collected over 180 nights. C. imicola accounted for 18.3% of the total captured. On the mainland, 16,197 Culicoides (44 species over 109 nights) were collected, none of which were C. imicola. The geographic and seasonal distribution of C. imicola and other species of interest are discussed in relation with their bio-ecology and environment. These datasets are essential for a better understanding of the epidemiology of BT, and to create and validate predictive models based on remote sensing in order to identify areas at risk for BT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...