Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 16(6): 854-860, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28492632

RESUMEN

One-dimensional titanate nanotubes (H2Ti2O5·H2O) functionalized with silver nanoparticles (AgNPs) exhibited unique properties for the effective inactivation of the Gram-negative Escherichia coli within 45 minutes under irradiation using a 65 W halogen lamp. The pathway of the photo-assisted catalytic inactivation was examined by SEM and TEM using a reproducible biological protocol for sample preparations. The membrane integrity of the bacteria was damaged due to the oxidative stress caused by the reactive oxygen species, the bacteriostatic effect of the highly-dispersed-surface AgNPs (∼5 nm) and the sharp nanotube penetration that induced the cell death.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Nanotubos/química , Plata/farmacología , Titanio/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Procesos Fotoquímicos , Plata/química , Titanio/química
2.
Science ; 289(5480): 774-9, 2000 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-10926539

RESUMEN

Establishment of cohesion between sister chromatids is coupled to replication fork passage through an unknown mechanism. Here we report that TRF4, an evolutionarily conserved gene necessary for chromosome segregation, encodes a DNA polymerase with beta-polymerase-like properties. A double mutant in the redundant homologs, TRF4 and TRF5, is unable to complete S phase, whereas a trf4 single mutant completes a presumably defective S phase that results in a failure of cohesion between the replicated sister chromatids. This suggests that TRFs are a key link in the coordination between DNA replication and sister chromatid cohesion. Trf4 and Trf5 represent the fourth class of essential nuclear DNA polymerases (designated DNA polymerase kappa) in Saccharomyces cerevisiae and probably in all eukaryotes.


Asunto(s)
Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Nucleares , Fase S , Proteínas de Saccharomyces cerevisiae , Proteínas Cromosómicas no Histona/genética , Cartilla de ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Mutagénesis Sitio-Dirigida , Mutación , Inhibidores de la Síntesis del Ácido Nucleico , Oligodesoxirribonucleótidos/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Moldes Genéticos
3.
J Bacteriol ; 179(21): 6862-4, 1997 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9352942

RESUMEN

SigmaE is an alternative sigma factor that controls the extracytoplasmic stress response in Escherichia coli. SigmaE is essential at high temperatures but was previously thought to be nonessential at temperatures below 37 degrees C. We present evidence that sigmaE is an essential sigma factor at all temperatures. Cells lacking sigmaE are able to grow at low temperatures because of the presence of a frequently arising, unlinked suppressor mutation.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Escherichia coli/genética , Mutagénesis , Proteínas Recombinantes/biosíntesis , Factor sigma/antagonistas & inhibidores , Factor sigma/genética , Supresión Genética , Temperatura , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transducción Genética
4.
J Bacteriol ; 179(20): 6504-8, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9335303

RESUMEN

In Salmonella typhimurium, the genetic loci and biochemical reactions necessary for the conversion of aminoimidazole ribotide (AIR) to the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine remain unknown. Preliminary genetic analysis indicates that there may be more than one pathway responsible for the synthesis of HMP from AIR and that the function of these pathways depends on the availability of AIR, synthesized by the purine pathway or by the purF-independent alternative pyrimidine biosynthetic (APB) pathway (L. Petersen and D. Downs, J. Bacteriol. 178:5676-5682, 1996). An insertion in rseB, the third gene in the rpoE rseABC gene cluster at 57 min, prevented HMP synthesis in a purF mutant. Complementation analysis demonstrated that the HMP requirement of the purF rseB strain was due to polarity of the insertion in rseB on the downstream rseC gene. The role of RseC in thiamine synthesis was independent of rpoE.


Asunto(s)
Genes Bacterianos , Pirimidinas/biosíntesis , Salmonella typhimurium/metabolismo , Tiamina/biosíntesis , Mutagénesis Insercional , Operón , Fenotipo , Salmonella typhimurium/genética , Factor sigma/genética , Factor sigma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Genes Dev ; 11(15): 2012-21, 1997 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-9271123

RESUMEN

The activity of the alternate sigma-factor sigmaE of Escherichia coli is induced by several stressors that lead to the extracytoplasmic accumulation of misfolded or unfolded protein. The sigmaE regulon contains several genes, including that encoding the periplasmic protease DegP, whose products are thought to be required for maintaining the integrity of the cell envelope because cells lacking sigmaE are sensitive to elevated temperature and hydrophobic agents. Selection of multicopy suppressors of the temperature-sensitive phenotype of cells lacking sigmaE revealed that overexpression of the lipoprotein NlpE restored high temperature growth to these cells. Overexpression of NlpE has been shown previously to induce DegP synthesis by activating the Cpx two-component signal transduction pathway, and suppression of the temperature-sensitive phenotype by NlpE was found to be dependent on the Cpx proteins. In addition, a constitutively active form of the CpxA sensor/kinase also fully suppressed the temperature-sensitive defect of cells lacking sigmaE. DegP was found to be necessary, but not sufficient, for suppression. Activation of the Cpx pathway has also been shown to alleviate the toxicity of several LamB mutant proteins. Together, these results reveal the existence of two partially overlapping regulatory systems involved in the response to extracytoplasmic stress in E. coli.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli/genética , Proteínas de Choque Térmico , Respuesta al Choque Térmico/genética , Proteínas Periplasmáticas , Proteínas Quinasas , Factor sigma/fisiología , Transducción de Señal/genética , Factores de Transcripción/fisiología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/fisiología , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/fisiología , Genes Bacterianos/fisiología , Genes Supresores/genética , Lipoproteínas/genética , Sistemas de Lectura Abierta/genética , Fenotipo , Regulón/fisiología , Análisis de Secuencia de ADN , Serina Endopeptidasas/genética , Serina Endopeptidasas/fisiología , Factor sigma/genética , Factores de Transcripción/genética
6.
Mol Microbiol ; 24(2): 373-85, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9159523

RESUMEN

The extracytoplasmic stress response in Escherichia coli is controlled by the alternative sigma factor, sigma(E). sigma(E) activity is uniquely induced by the accumulation of outer membrane protein precursors in the periplasmic space, and leads to the increased production of several proteins, including the periplasmic protease DegP, that are thought to be required for maintaining cellular integrity under stress conditions. Genetic and biochemical experiments show that sigma(E) activity is under the control of three genes, rseABC (for regulator of sigma E), encoded immediately downstream of the sigma factor. Deletion of rseA leads to a 25-fold induction of sigma(E) activity. RseA is predicted to be an inner membrane protein, and the purified cytoplasmic domain binds to and inhibits sigma(E)-directed transcription in vitro, indicating that RseA acts as an anti-sigma factor. Deletion of rseB leads to a slight induction of sigma(E), indicating that RseB is also a negative regulator of sigma(E). RseB is a periplasmic protein and was found to co-purify with the periplasmic domain of RseA, indicating that RseB probably exerts negative activity on sigma(E) through RseA. Deletion of rseC, in contrast, has no effect on sigma(E) activity under steady-state conditions. Under induction conditions, strains lacking RseB and/or C show wild-type induction of sigma(E) activity, indicating either the presence of multiple pathways regulating sigma(E) activity, or the ability of RseA alone to both sense and transmit information to sigma(E).


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Mutagénesis , Sistemas de Lectura Abierta , Plásmidos , Proteínas Tirosina Quinasas Receptoras/fisiología , Eliminación de Secuencia , Transducción de Señal/genética , Transducción de Señal/fisiología , Transcripción Genética
7.
EMBO J ; 14(5): 1032-42, 1995 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-7889934

RESUMEN

In Escherichia coli, the heat shock response is under the control of two alternative sigma factors: sigma 32 and sigma E. The sigma 32-regulated response is well understood, whereas little is known about that of sigma E, except that it responds to extracytoplasmic immature outer membrane proteins. To further understand this response, we located the rpoE gene at 55.5' and analyzed the role of sigma E. sigma E is required at high temperature, and controls the transcription of at least 10 genes. Some of these might contribute to the integrity of the cell since delta rpoE cells are more sensitive to SDS plus EDTA and crystal violet. sigma E controls its own transcription from a sigma E-dependent promoter, indicating that rpoE transcription plays a role in the regulation of E sigma E activity. Indeed, under steady-state conditions, the transcription from this promoter mirrors the levels of E sigma E activity in the cell. However, it is unlikely that the rapid increase in E sigma E activity following induction can be accounted for solely by increased transcription of rpoE. Based upon homology arguments, we suggest that a gene encoding a negative regulator of sigma E activity is located immediately downstream of rpoE and may function as the target of the E sigma E inducing signal.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Factor sigma/genética , Factores de Transcripción , Transcripción Genética , Secuencia de Aminoácidos , Proteínas Bacterianas/biosíntesis , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Genes Bacterianos/genética , Proteínas de Choque Térmico/genética , Calor , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética
8.
J Bacteriol ; 173(3): 1250-8, 1991 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-1991718

RESUMEN

Nodulation by Rhizobium, Bradyrhizobium, and Azorhizobium species in the roots of legumes and nonlegumes requires the proper expression of plant genes and of both common and specific bacterial nodulation genes. The common nodABC genes form an operon or are physically mapped together in all species studied thus far. Rhizobium leguminosarum bv. phaseoli strains are classified in two groups. The type I group has reiterated nifHDK genes and a narrow host range of nodulation. The type II group has a single copy of the nifHDK genes and a wide host range of nodulation. We have found by genetic and nucleotide sequence analysis that in type I strain CE-3, the functional common nodA gene is separated from the nodBC genes by 20 kb and thus is transcriptionally separated from the latter genes. This novel organization could be the result of a complex rearrangement, as we found zones of identity between the two separated nodA and nodBC regions. Moreover, this novel organization of the common nodABC genes seems to be a general characteristic of R. leguminosarum bv. phaseoli type I strains. Despite the separation, the coordination of the expression of these genes seems not to be altered.


Asunto(s)
Aciltransferasas , Genes Bacterianos , N-Acetilglucosaminiltransferasas , Rhizobium/genética , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Cósmidos , Datos de Secuencia Molecular , Fijación del Nitrógeno/genética , Sistemas de Lectura Abierta , Plantas/genética , Plantas/microbiología , Mapeo Restrictivo , Rhizobium/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA