Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EJNMMI Radiopharm Chem ; 8(1): 20, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37646865

RESUMEN

BACKGROUND: Imaging of cell death can provide an early indication of treatment response in cancer. [99mTc]Tc-Duramycin is a small-peptide SPECT tracer that recognizes both apoptotic and necrotic cells by binding to phosphatidylethanolamine present in the cell membrane. Preclinically, this tracer has shown to have favorable pharmacokinetics and selective tumor accumulation early after the onset of anticancer therapy. In this first-in-human study, we report the safety, biodistribution and internal radiation dosimetry of [99mTc]Tc-Duramycin in healthy human volunteers. RESULTS: Six healthy volunteers (3 males, 3 females) were injected intravenously with [99mTc]Tc-Duramycin (dose: 6 MBq/kg; 473 ± 36 MBq). [99mTc]Tc-Duramycin was well tolerated in all subjects, with no serious adverse events reported. Following injection, a 30-min dynamic planar imaging of the abdomen was performed, and whole-body (WB) planar scans were acquired at 1, 2, 3, 6 and 23 h post-injection (PI), with SPECT acquisitions after each WB scan and one low-dose CT after the first SPECT. In vivo 99mTc activities were determined from semi-quantitative analysis of the images, and time-activity curves were generated. Residence times were calculated from the dynamic and WB planar scans. The mean effective dose was 7.61 ± 0.75 µSv/MBq, with the kidneys receiving the highest absorbed dose (planar analysis: 43.82 ± 4.07 µGy/MBq, SPECT analysis: 19.72 ± 3.42 µGy/MBq), followed by liver and spleen. The median effective dose was 3.61 mSv (range, 2.85-4.14). The tracer cleared slowly from the blood (effective half-life of 2.0 ± 0.4 h) due to high plasma protein binding with < 5% free tracer 3 h PI. Excretion was almost exclusively renal. CONCLUSION: [99mTc]Tc-Duramycin demonstrated acceptable dosimetry (< 5 mSv) and a favorable safety profile. Due to slow blood clearance, optimal target-to-background ratios are expected 5 h PI. These data support the further assessment of [99mTc]Tc-Duramycin for clinical treatment response evaluation. TRIAL REGISTRATION: NCT05177640, Registered April 30, 2021, https://clinicaltrials.gov/study/NCT05177640 .

2.
Sci Transl Med ; 14(630): eabm3682, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35108063

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin (HTT) gene that encodes the pathologic mutant HTT (mHTT) protein with an expanded polyglutamine (polyQ) tract. Whereas several therapeutic programs targeting mHTT expression have advanced to clinical evaluation, methods to visualize mHTT protein species in the living brain are lacking. Here, we demonstrate the development and characterization of a positron emission tomography (PET) imaging radioligand with high affinity and selectivity for mHTT aggregates. This small molecule radiolabeled with 11C ([11C]CHDI-180R) allowed noninvasive monitoring of mHTT pathology in the brain and could track region- and time-dependent suppression of mHTT in response to therapeutic interventions targeting mHTT expression in a rodent model. We further showed that in these animals, therapeutic agents that lowered mHTT in the striatum had a functional restorative effect that could be measured by preservation of striatal imaging markers, enabling a translational path to assess the functional effect of mHTT lowering.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ligandos , Enfermedades Neurodegenerativas/patología
3.
Artículo en Inglés | MEDLINE | ID: mdl-34856382

RESUMEN

BACKGROUND: This study provides a first direct comparison between positron emission tomography radioligands targeting the allosteric site of the metabotropic glutamate receptor 5 (mGluR5): [11C]ABP688 and [18F]FPEB. A blocking paradigm was set up to substantiate the common binding site of both radioligands. Second, both radioligands were applied in Sapap3 knockout (KO) mice showing compulsive-like behavior characterized by a lower in vivo mGluR5 availability. METHODS: First, wild-type mice (n = 7) received four position emission tomography/computed tomography scans: a [11C]ABP688 scan, a [18F]FPEB scan, and two blocking scans using cold FPEB and cold ABP688, respectively. A second experiment compared both radioligands in wild-type (n = 7) and KO (n = 10) mice. The simplified reference tissue model was used to calculate the nondisplaceable binding potential representing the in vivo availability of mGluR5 in the brain. RESULTS: Using cold FPEB as a blocking compound for [11C]ABP688 micro-positron emission tomography and vice versa, we observed averaged global reductions in mGluR5 availability of circa 98% for [11C]ABP688 and 82%-96% for [18F]FPEB. For KOs, the [11C]ABP688 nondisplaceable binding potential was on average 25% lower compared with wild-type control mice (p < .0001-.001), while this was about 17% for [18F]FPEB (p < .05). CONCLUSIONS: The current findings substantiate a common binding site and suggest a strong relationship between mGluR5 availability levels measured with both radioligands. In Sapap3 KO mice, a reduced mGluR5 availability could therefore be demonstrated with both radioligands. With [11C]ABP688, higher significance levels were achieved in more brain regions. These findings suggest [11C]ABP688 as a preferable radiotracer to quantify mGluR5 availability, as exemplified here in a model for compulsive-like behavior.


Asunto(s)
Trastorno Obsesivo Compulsivo , Receptor del Glutamato Metabotropico 5 , Animales , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso , Oximas , Tomografía de Emisión de Positrones/métodos , Piridinas , Receptor del Glutamato Metabotropico 5/metabolismo
4.
EJNMMI Res ; 10(1): 140, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33185747

RESUMEN

BACKGROUND: Currently, the evidence on synaptic abnormalities in neuropsychiatric disorders-including obsessive-compulsive disorder (OCD)-is emerging. The newly established positron emission tomography (PET) ligand ((R)-1-((3-((11)C-methyl-(11)C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) ([11C]UCB-J) provides the opportunity to visualize synaptic density changes in vivo, by targeting the synaptic vesicle protein 2A (SV2A). Here, we aim to evaluate such alterations in the brain of the SAP90/PSD-95-associated protein 3 (Sapap3) knockout (ko) mouse model, showing an abnormal corticostriatal neurotransmission resulting in OCD-like behaviour. METHODS: Longitudinal [11C]UCB-J µPET/CT scans were acquired in Sapap3 ko and wildtype (wt) control mice (n = 9/group) to study SV2A availability. Based on the Logan reference method, we calculated the volume of distribution (VT(IDIF)) for [11C]UCB-J. Both cross-sectional (wt vs. ko) and longitudinal (3 vs. 9 months) volume-of-interest-based statistical analysis and voxel-based statistical parametric mapping were performed. Both [11C]UCB-J ex vivo autoradiography and [3H]UCB-J in vitro autoradiography were used for the validation of the µPET data. RESULTS: At the age of 3 months, Sapap3 ko mice are already characterized by a significantly lower SV2A availability compared to wt littermates (i.a. cortex - 12.69%, p < 0.01; striatum - 14.12%, p < 0.001, thalamus - 13.11%, p < 0.001, and hippocampus - 12.99%, p < 0.001). Healthy ageing in control mice was associated with a diffuse and significant (p < 0.001) decline throughout the brain, whereas in Sapap3 ko mice this decline was more confined to the corticostriatal level. A strong linear relationship (p < 0.0001) was established between the outcome parameters of [11C]UCB-J µPET and [11C]UCB-J ex vivo autoradiography, while such relationship was absent for [3H]UCB-J in vitro autoradiography. CONCLUSIONS: [11C]UCB-J PET is a potential marker for synaptic density deficits in the Sapap3 ko mouse model for OCD, parallel to disease progression. Our data suggest that [11C]UCB-J ex vivo autoradiography is a suitable proxy for [11C]UCB-J PET data in mice.

5.
EJNMMI Radiopharm Chem ; 5(1): 19, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728930

RESUMEN

BACKGROUND: Fibroblast activation protein (FAP) is a proline selective serine protease that is overexpressed in tumor stroma and in lesions of many other diseases that are characterized by tissue remodeling. In 2014, a most potent FAP-inhibitor (referred to as UAMC1110) with low nanomolar FAP-affinity and high selectivity toward related enzymes such as prolyl oligopeptidase (PREP) and the dipeptidyl-peptidases (DPPs): DPP4, DPP8/9 and DPP2 were developed. This inhibitor has been adopted recently by other groups to create radiopharmaceuticals by coupling bifunctional chelator-linker systems. Here, we report squaric acid (SA) containing bifunctional DATA5m and DOTA chelators based on UAMC1110 as pharmacophor. The novel radiopharmaceuticals DOTA.SA.FAPi and DATA5m.SA.FAPi with their non-radioactive derivatives were characterized for in vitro inhibitory efficiency to FAP and PREP, respectively and radiochemical investigated with gallium-68. Further, first proof-of-concept in vivo animal study followed by ex vivo biodistribution were determined with [68Ga]Ga-DOTA.SA.FAPi. RESULTS: [68Ga]Ga-DOTA.SA.FAPi and [68Ga]Ga-DATA5m.SA.FAPi showed high complexation > 97% radiochemical yields after already 10 min and high stability over a period of 2 h. Affinity to FAP of DOTA.SA.FAPi and DATA5m.SA.FAPi and its natGa and natLu-labeled derivatives were excellent resulting in low nanomolar IC50 values of 0.7-1.4 nM. Additionally, all five compounds showed low affinity for the related protease PREP (high IC50 with 1.7-8.7 µM). First proof-of-principle in vivo PET-imaging animal studies of the [68Ga]Ga-DOTA.SA.FAPi precursor in a HT-29 human colorectal cancer xenograft mouse model indicated promising results with high accumulation in tumor (SUVmean of 0.75) and low background signal. Ex vivo biodistribution showed highest uptake in tumor (5.2%ID/g) at 60 min post injection with overall low uptake in healthy tissues. CONCLUSION: In this work, novel PET radiotracers targeting fibroblast activation protein were synthesized and biochemically investigated. Critical substructures of the novel compounds are a squaramide linker unit derived from the basic motif of squaric acid, DOTA and DATA5m bifunctional chelators and a FAP-targeting moiety. In conclusion, these new FAP-ligands appear promising, both for further research and development as well as for first human application.

6.
Nucl Med Biol ; 86-87: 20-29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32447069

RESUMEN

INTRODUCTION: Glucose has been deemed the driving force of tumor growth for decades. However, research has shown that several tumors metabolically shift towards glutaminolysis. The development of radiolabeled glutamine derivatives could be a useful molecular imaging tool for visualizing these tumors. We elaborated on the glutamine-derived PET tracers by developing two novel probes, namely [18F]fluorophenylglutamine and [18F]fluorobiphenylglutamine. MATERIALS AND METHODS: Both tracers were labelled with fluorine-18 using our recently reported ruthenium-based direct aromatic fluorination method. Their affinity was evaluated with a [3H]glutamine inhibition experiment in a human PC-3 and a rat F98 cell line. The imaging potential of [18F]fluorophenylglutamine and [18F]fluorobiphenylglutamine was tested using a mouse PC-3 and a rat F98 tumor model. RESULTS: The radiosynthesis of both tracers was successful with overall non-decay corrected yields of 18.46 ± 4.18% (n = 10) ([18F]fluorophenylglutamine) and 8.05 ± 3.25% (n = 5) ([18F]fluorobiphenylglutamine). In vitro inhibition experiments showed a moderate and low affinity of fluorophenylglutamine and fluorobiphenylglutamine, respectively, towards the human ASCT-2 transporter. Both compounds had a low affinity towards the rat ASCT-2 transporter. These results were endorsed by the in vivo experiments with low uptake of both tracers in the F98 rat xenograft, low uptake of [18F]FBPG in the mice PC-3 xenograft and a moderate uptake of [18F]FPG in the PC-3 tumors. CONCLUSION: We investigated the imaging potential of two novel PET radiotracers [18F]FPG and [18F]FBPG. [18F]FPG is the first example of a glutamine radiotracer derivatized with a phenyl group which enables the exploration of further derivatization of the phenyl group to increase the affinity and imaging qualities. We hypothesize that increasing the affinity of [18F]FPG by optimizing the substituents of the arene ring can result in a high-quality glutamine-based PET radiotracer. Advances in Knowledge and Implications for patient care: We hereby report novel glutamine-based PET-tracers. These tracers are tagged on the arene group with fluorine-18, hereby preventing in vivo defluorination, which can occur with alkyl labelled tracers (e.g. (2S,4R)4-[18F]fluoroglutamine). [18F]FPG shows clear tumor uptake in vivo, has no in vivo defluorination and has a straightforward production. We believe this tracer is a good starting point for the development of a high-quality tracer which is useful for the clinical visualization of the glutamine transport.


Asunto(s)
Glutamina/síntesis química , Tomografía de Emisión de Positrones , Animales , Transformación Celular Neoplásica , Radioisótopos de Flúor/química , Glutamina/química , Glutamina/farmacocinética , Humanos , Modelos Moleculares , Conformación Molecular , Células PC-3 , Trazadores Radiactivos , Radioquímica , Ratas , Distribución Tisular
7.
Methods Mol Biol ; 1981: 87-98, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31016649

RESUMEN

Drug-induced liver injury, and more specifically drug-induced cholestasis, is responsible for a large amount of hospitalizations and attrition of new drug candidates in preclinical drug development. Drug-induced cholestasis can be triggered by drugs that are inhibitors of the hepatic bile acid transporters. Therefore, it is of considerable interest in preclinical drug development to detect whether new candidate drugs can cause interference with the hepatic bile acid transporters. Although several cost-effective and fast in vitro assays are available to that end, these do not mimic the in vivo situation completely. In vivo research to monitor a new candidate drug's cholestatic potential is still relevant, yet is time-consuming and requires invasive sampling of a lot of laboratory animals. In this chapter, a protocol is provided to determine in vivo inhibition of the hepatic bile acid transporters in mice, using the nuclear imaging techniques positron emission tomography and single photon emission computed tomography. The protocol includes detailed information on preparation of the animal, scan acquisition, processing, and (statistical) analysis.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Colestasis/metabolismo , Hígado , Ratones , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único
8.
Sci Rep ; 9(1): 2878, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814660

RESUMEN

The use of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) as a positron emission tomography (PET) tracer for brain tumor imaging might have some limitations because of the relatively low affinity for the L-type amino acid transporter 1 (LAT1). To assess the stereospecificity and evaluate the influence of aromatic ring modification of phenylalanine LAT1 targeting tracers, six different fluoroalkylated phenylalanine analogues were synthesized. After in vitro Ki determination, the most promising compound, 2-[18F]-2-fluoroethyl-L-phenylalanine (2-[18F]FELP), was selected for further evaluation and in vitro comparison with [18F]FET. Subsequently, 2-[18F]FELP was assessed in vivo and compared with [18F]FET and [18F]FDG in a F98 glioblastoma rat model. 2-[18F]FELP showed improved in vitro characteristics over [18F]FET, especially when the affinity and specificity for system L is concerned. Based on our results, 2-[18F]FELP is a promising new PET tracer for brain tumor imaging.


Asunto(s)
Glioblastoma/metabolismo , Glioblastoma/patología , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Tirosina/análogos & derivados , Animales , Apoptosis , Proliferación Celular , Femenino , Glioblastoma/diagnóstico por imagen , Humanos , Transportador de Aminoácidos Neutros Grandes 1/genética , Ratas , Células Tumorales Cultivadas , Tirosina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nucl Med Biol ; 68-69: 40-48, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30595544

RESUMEN

Recently, our research group reported on the development of 3ß-[18F]Fluorocholic acid (3ß-[18F]FCA), a 18F labeled bile acid to detect drug interference with the bile acid transporters (drug-induced cholestasis). It was hypothesized that 3ß-[18F]FCA could also be used as a non-invasive tool to monitor (regional) liver function in vivo in different liver diseases through altered expression of bile acid transporters. METHODS: Hepatobiliary transport of 3ß-[18F]FCA was evaluated in four murine liver disease models. Acute liver injury was induced by oral gavage of an acetaminophen (APAP) overdose (300 mg/kg). Chronic cholangiopathy and non-alcoholic steatohepatitis (NASH) were induced by feeding mice 3,5-diethoxycarbonyl- 1,4-dihydrocollidine (DDC) diet or methionine and choline deficient (MCD) diet, respectively. Hepatocellular carcinoma (HCC) was evoked by intraperitoneal injection of 35 mg/kg diethylnitrosamine (DEN) once a week for 23 weeks. Gene expression of the murine bile acid transporters was determined by RT-qPCR. RESULTS: Hepatobiliary transport of 3ß-[18F]FCA was not significantly altered after an APAP overdose. Mice fed the DDC or MCD diet showed impaired transport of 3ß-[18F]FCA compared to baseline, which was associated with altered expression of the bile acid transporters ntcp, oatp4 and mrp2. After recovery from DDC- and MCD-induced liver injury, 3ß-[18F]FCA parameters returned to baseline. Global hepatobiliary transport of 3ß-[18F]FCA in HCC bearing mice was not significantly different compared to control mice. However, HCC lesions showed reduced hepatic uptake of the tracer (tumor-to-background: 0.45 ±â€¯0.13), which was in line with decreased in expression of basolateral bile acid uptake transporters nctp and oatp4 in tumor tissue. CONCLUSION: 3ß-[18F]FCA is a useful tool to assess and longitudinally follow-up liver function in several mouse models for liver diseases that are associated with altered expression of the bile acid transporters. These results point towards the (pre)clinical utility of 3ß-[18F]FCA as a PET tracer to monitor altered liver functionality in patients with chronic liver diseases.


Asunto(s)
Sistema Biliar/diagnóstico por imagen , Sistema Biliar/metabolismo , Ácidos Cólicos , Hepatopatías/diagnóstico por imagen , Hepatopatías/fisiopatología , Hígado/diagnóstico por imagen , Hígado/fisiopatología , Tomografía de Emisión de Positrones/métodos , Animales , Transporte Biológico , Modelos Animales de Enfermedad , Hígado/metabolismo , Hepatopatías/metabolismo , Masculino , Ratones
10.
Phys Med ; 52: 122-128, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30139600

RESUMEN

The performances of an intra-operative optical imaging system for Cerenkov luminescence imaging of resected tumor specimens were evaluated with phantom studies. The spatial resolution, the linearity of the measured signal with the activity concentration and the minimum detectable activity concentration were considered. A high linearity was observed over a broad range of activity concentration (R2⩾0.99 down to ∼40 kBq/ml of 18F-FDG). For 18F-FDG activity distributions 2 mm deep in biological tissue, the measured detection limit was 8 kBq/ml and a spatial resolution of 2.5 mm was obtained. The detection limit of the imaging system is comparable with clinical activity concentrations in tumor specimens, and the spatial resolution is compatible with clinical requirements.


Asunto(s)
Imagen Óptica/instrumentación , Cintigrafía/instrumentación , Cirugía Asistida por Computador/instrumentación , Animales , Fluorodesoxiglucosa F18 , Ratones Endogámicos BALB C , Neoplasias/diagnóstico por imagen , Neoplasias/cirugía , Fantasmas de Imagen , Radiofármacos
11.
Contrast Media Mol Imaging ; 2018: 6345412, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29853807

RESUMEN

Introduction: An in vivo determination of bile acid hepatobiliary transport efficiency can be of use in liver disease and preclinical drug development. Given the increased interest in bile acid Positron Emission Tomography- (PET-) imaging, a further understanding of the impact of 18-fluorine substitution on bile acid handling in vitro and in vivo can be of significance. Methods: A number of bile acid analogues were conceived for nucleophilic substitution with [18F]fluoride: cholic acid analogues of which the 3-, 7-, or 12-OH function is substituted with a fluorine atom (3α-[18F]FCA; 7ß-[18F]FCA; 12ß-[18F]FCA); a glycocholic and chenodeoxycholic acid analogue, substituted on the 3-position (3ß-[18F]FGCA and 3ß-[18F]FCDCA, resp.). Uptake by the bile acid transporters NTCP and OATP1B1 was evaluated with competition assays in transfected CHO and HEK cell lines and efflux by BSEP in membrane vesicles. PET-scans with the tracers were performed in wild-type mice (n = 3 per group): hepatobiliary transport was monitored and compared to a reference tracer, namely, 3ß-[18F]FCA. Results: Compounds 3α-[18F]FCA, 3ß-[18F]FGCA, and 3ß-[18F]FCDCA were synthesized in moderate radiochemical yields (4-10% n.d.c.) and high radiochemical purity (>99%); 7ß-[18F]FCA and 12ß-[18F]FCA could not be synthesized and included further in this study. In vitro evaluation showed that 3α-FCA, 3ß-FGCA, and 3ß-FCDCA all had a low micromolar Ki-value for NTCP, OATP1B1, and BSEP. In vivo, 3α-[18F]FCA, 3ß-[18F]FGCA, and 3ß-[18F]FCDCA displayed hepatobiliary transport with varying efficiency. A slight yet significant difference in uptake and efflux rate was noticed between the 3α-[18F]FCA and 3ß-[18F]FCA epimers. Conjugation of 3ß-[18F]FCA with glycine had no significant effect in vivo. Compound 3ß-[18F]FCDCA showed a significantly slower hepatic uptake and efflux towards gallbladder and intestines. Conclusion: A set of 18F labeled bile acids was synthesized that are substrates of the bile acid transporters in vitro and in vivo and can serve as PET-biomarkers for hepatobiliary transport of bile acids.


Asunto(s)
Ácidos y Sales Biliares/química , Eliminación Hepatobiliar , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Animales , Ácidos y Sales Biliares/síntesis química , Ácidos y Sales Biliares/metabolismo , Transporte Biológico , Células CHO , Proteínas Portadoras/metabolismo , Cricetulus , Radioisótopos de Flúor , Células HEK293 , Humanos , Glicoproteínas de Membrana/metabolismo , Ratones , Estructura Molecular , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo
12.
PLoS One ; 12(3): e0173529, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28273180

RESUMEN

INTRODUCTION: Drug-induced cholestasis is a liver disorder that might be caused by interference of drugs with the hepatobiliary bile acid transporters. It is important to identify this interference early on in drug development. In this work, Positron Emission Tomography (PET)-imaging with a 18F labeled bile acid analogue was introduced to detect disturbed hepatobiliary transport of bile acids. METHODS: 3ß-[18F]fluorocholic acid ([18F]FCA) was prepared by nucleophilic substitution of a mesylated precursor with [18F]fluoride, followed by deprotection with sodium hydroxide. Transport of [18F]FCA was assessed in vitro using CHO-NTCP, HEK-OATP1B1, HEK-OATP1B3 transfected cells and BSEP & MRP2 membrane vesicles. Investigation of [18F]FCA metabolites was performed with primary mouse hepatocytes. Hepatobiliary transport of [18F]FCA was evaluated in vivo in wild-type, rifampicin and bosentan pretreated FVB-mice by dynamic µPET scanning. RESULTS: Radiosynthesis of [18F]FCA was achieved in a moderate radiochemical yield (8.11 ± 1.94%; non-decay corrected; n = 10) and high radiochemical purity (>99%). FCA was transported by the basolateral bile acid uptake transporters NTCP, OATP1B1 and OATP1B3. For canalicular efflux, BSEP and MRP2 are the relevant bile acid transporters. [18F]FCA was found to be metabolically stable. In vivo, [18F]FCA showed fast hepatic uptake (4.5 ± 0.5 min to reach 71.8 ± 1.2% maximum % ID) and subsequent efflux to the gallbladder and intestines (93.3 ± 6.0% ID after 1 hour). Hepatobiliary transport of [18F]FCA was significantly inhibited by both rifampicin and bosentan. CONCLUSION: A 18F labeled bile acid analogue, [18F]FCA, has been developed that shows transport by NTCP, OATP, MRP2 and BSEP. [18F]FCA can be used as a probe to monitor disturbed hepatobiliary transport in vivo and accumulation of bile acids in blood and liver during drug development.


Asunto(s)
Ácidos y Sales Biliares , Colestasis/diagnóstico por imagen , Colestasis/etiología , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Línea Celular , Vesícula Biliar/diagnóstico por imagen , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones
13.
Nucl Med Biol ; 43(10): 642-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27513813

RESUMEN

INTRODUCTION: Hepatobiliary transport mechanisms are crucial for the excretion of substrate toxic compounds. Drugs can inhibit these transporters, which can lead to drug-drug interactions causing toxicity. Therefore, it is important to assess this early during the development of new drug candidates. The aim of the current study is the (radio)synthesis, in vitro and in vivo evaluation of a technetium labeled chenodeoxycholic and cholic acid analogue: [(99m)Tc]-DTPA-CDCA and [(99m)]Tc-DTPA-CA, respectively, as biomarker for disturbed transporter functionality. METHODS: [99mTc]-DTPA-CDCA([(99m)Tc]-3a) and [99mTc]-DTPA-CA ([(99m)Tc]-3b) were synthesized and evaluated in vitro and in vivo. Uptake of both tracers was investigated in NTCP, OCT1, OATP1B1, OATP1B3 transfected cell lines. Km and Vmax values were determined and compared to [(99m)Tc]-mebrofenin ([(99m)Tc]-MEB). Efflux was investigated by means of CTRL, MRP2 and BSEP transfected inside-out vesicles. Metabolite analysis was performed using pooled human liver S9. Wild type (n=3) and rifampicin treated (n=3) mice were intravenously injected with 37MBq of tracer. After dynamic small-animal SPECT and short CT acquisitions, time-activity curves of heart, liver, gallbladder and intestines were obtained. RESULTS: We demonstrated that OATP1B1 and OATP1B3 are the involved uptake transporters of both compounds. Both tracers show a higher affinity compared to [(99m)Tc]-MEB, but are in a similar range as endogenous bile acids for OATP1B1 and OATP1B3. [(99m)Tc]-3a shows higher affinities compared to [(99m)Tc]-3b. Vmax values were lower compared to [(99m)Tc]-MEB, but in the same range as endogenous bile acids. MRP2 was identified as efflux transporter. Less than 7% of both radiotracers was metabolized in the liver. In vitro results were confirmed by in vivo results. Uptake in the liver and efflux to gallbladder + intestines and urinary bladder of both tracers was observed. Transport was inhibited by rifampicin. CONCLUSION: The involved transporters were identified; both tracers are taken up in the hepatocytes by OATP1B1 andOATP1B3 with Km and Vmax values in the same range as endogenous bile acids and are secreted into bile canaliculi via MRP2. Dynamic small-animal SPECT imaging can be a useful noninvasive method of visualizing and quantifying hepatobiliary transporter functionality and disturbances thereof in vivo, which could predict drug pharmacokinetics.


Asunto(s)
Ácido Quenodesoxicólico/química , Ácido Cólico/química , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Tecnecio/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Transporte Biológico , Línea Celular , Técnicas de Química Sintética , Ácido Quenodesoxicólico/síntesis química , Ácido Quenodesoxicólico/metabolismo , Ácido Cólico/síntesis química , Ácido Cólico/metabolismo , Femenino , Humanos , Marcaje Isotópico , Ratones , Radioquímica , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...