Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(13): 6703-6717, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498309

RESUMEN

Graphene doped with different transition metals has been recently proposed to adsorb CO2 and help reduce the greenhouse effect. Iron-doped graphene is one of the most promising candidates for this task, but there is still a lack of full understanding of the adsorption mechanism. In this work, we analyze the electronic structure, geometry, and charge redistribution during adsorption of CO2 molecules by single vacancy iron-doped graphene by DFT calculations using the general gradient approximation of Perdew, Burke, and Ernzernhof functional (PBE) and the van der Waals density functional (vdW). To understand the impact of the pyridinic-N coordination of the iron atom, we gradually replaced the neighboring carbon atoms by nitrogen atoms. The analysis indicates that chemisorption and physisorption occur when the molecule is adsorbed in the side-on and end-on orientation, respectively. Adsorption is stronger when pyridinic-N coordination increases, and the vdW functional describes the chemical interactions and adsorption energy differently in relation to PBE without significant structural changes. The development of the chemical interactions with the change of coordination in the system is further investigated in this work with crystal overlap Hamilton population (COHP) analysis.

2.
ACS Omega ; 8(49): 46763-46776, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107885

RESUMEN

This study focuses on a one-pot solvothermal synthetic route for the preparation of uniformly decorated zinc oxide nanoparticles on the surface of reduced graphene oxide (rGO/ZnO-NC) by using Andrographis paniculata leaf aqueous extract as an eco-friendly reducing agent. After characterizing the samples by different physical and chemical techniques, the anticancer activity of the synthesized rGO/ZnO-NC was examined on two human cancerous cell lines (HCT116 and A549) and one normal cell line (hMSCs). The MTT assays revealed that rGO/ZnO-NC exhibited dose-dependent cytotoxicity at a maximum concentration range of 10 ppm and the viability of the cells was drastically decreased to 95-96%. Measurement of reactive oxygen species (ROS) generation and Annexin V-FTIC staining assay revealed that rGO/ZnO-NC induced apoptosis in HCT116 and A549 cell lines. Thus, this study shows that the green-synthesized rGO/ZnO-NC has great potential in developing an efficacious novel therapeutic agent for cancers.

3.
ACS Omega ; 8(27): 24524-24543, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37457483

RESUMEN

Acute acetaminophen (APAP) toxicity is a predominant clinical problem, which causes serious liver injury in both humans and experimental animals. This study presents the histological and biochemical factor and antioxidant enzyme level changes induced by an acute acetaminophen overdose in Wistar albino rat livers to elucidate the effective hepatoprotective potential of biofabricated palladium nanoparticle-decorated reduced graphene oxide nanocomposites (rGO/PdNPs-NC) compared to silymarin. After detailed characterization of the hepatoprotective potential of the synthesized rGO/PdNPs-NC, the rats were divided into eight groups (n = 6): control group (normal saline, 1 mL/kg b.w.), silymarin, Punica granatum (pomegranate) peel extract, PdNPs, reduced graphene oxide (rGO-PG), and reduced graphene oxide palladium nanocomposites (rGO/PdNPs-NC, low and high doses) for 7 successive days. The acetaminophen (APAP)-treated group was administered a single dose of acetaminophen (2 g/kg b.w.) on the 8th day. The histopathological results showed that the acetaminophen overdose group exhibited massive intrahepatic hemorrhagic necrosis around the centrilobular region with hepatocytes with vacuolization and swollen cytoplasm found in the liver architecture. This hepatopotential was further assessed by various biochemical parameters such as SGOT, SGPT, ALB, ALP, LDH, direct bilirubin, total bilirubin, and total protein. Also, the antioxidant parameters such as SOD, CAT, MDA, GSH, GRD, and GST were assayed. Rats of groups 7 and 8 showed a significant decrease in SGOT, SGPT, ALP, LDH, direct bilirubin, and total bilirubin (p < 0.001), while a significant increase in the final total protein and ALB as compared to group 2 rats (p < 0.001) was observed. The antioxidant parameters exhibited that rats of groups 7 and 8 showed a significant (p < 0.001) increase in the level of SOD, CAT, GSH, GRD, and GST without affecting the MDA as compared to group 2 rats. Also, the hepatoprotective potential of rGO/PdNPs-NC (low and high doses) was comparable to that of the standard reference drug silymarin. The present study reveals that the rGO/PdNPs-NC possesses significant hepatoprotective activity and acts as an effective and promising curative agent against acetaminophen-induced hepatotoxicity.

4.
ACS Omega ; 8(21): 18653-18662, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37273593

RESUMEN

The application of a novel BiFeO3 (BFO)-black TiO2 (BTO) composite (called BFOT) as a photocatalyst for the degradation of methylene blue is reported. The p-n heterojunction photocatalyst was synthesized for the first time through microwave-assisted co-precipitation synthesis to change the molar ratio of BTO in BiFeO3 to increase the photocatalytic efficiency of the BiFeO3 photocatalyst. The UV-visible properties of p-n heterostructures showed excellent absorption of visible light and reduced electron-hole recombination properties compared to the pure-phase BFO. Photocatalytic studies on BFOT10, BFOT20, and BFOT30 have shown that they decompose methylene blue (MB) in sunlight better than pure-phase BFO in 70 min. The BFOT30 photocatalyst was the most effective at reducing MB when exposed to visible light (97%). Magnetic studies have shown that BTO is diamagnetic, and the BFOT10 photocatalyst exhibits a very weak antiferromagnetic behavior, whereas BFOT20 and BFO30 show diamagnetic behavior. This study confirms that the catalyst has poor stability and weak magnetic recovery properties due to the non-magnetic phase BTO in the BFO.

5.
Nanoscale Adv ; 5(9): 2646-2656, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37143803

RESUMEN

The application of a novel BiFeO3 (BFO)-Fe2O3 composite (called BFOF) as a photocatalyst for the degradation of methylene blue is reported. To improve the photocatalytic effectiveness of BiFeO3, we synthesized the first BFOF photocatalyst by adjusting the molar ratio of Fe2O3 in BiFeO3 using microwave-assisted co-precipitation. The UV-visible properties of the nanocomposites showed excellent absorption of visible light and reduced electron-hole recombination properties compared to the pure phase BFO. Photocatalytic studies on BFOF10 (90% BFO, 10% Fe2O3), BFOF20 (80% BFO, 20% Fe2O3), and BFOF30 (70% BFO, 30% Fe2O3) have shown that they decompose Methylene Blue (MB) in sunlight better than the pure BFO phase in 70 minutes. The BFOF30 photocatalyst was the most effective at reducing MB when exposed to visible light (94%). Magnetic studies confirm that the most effective catalyst BFOF30 has excellent stability and magnetic recovery properties due to the presence of magnetic phase Fe2O3 in the BFO.

6.
ACS Omega ; 8(2): 2406-2420, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36687032

RESUMEN

This study mainly deals with an effective one-pot solvothermal synthetic pathway for the preparation of uniformly dispersed zirconium oxide nanoparticles on the flattened rough surface of reduced graphene oxide (ZrO2/rGO NCs) using the aqueous leaf extract of Andrographis paniculata. After obtaining detailed information on the preparation and characterization, the anticancer activity of the synthesized ZrO2/rGO nanocrystals (NCs) was evaluated on two human cancer cell lines (A549 and HCT116) along with one normal human cell line (hMSC). The 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide assays revealed that ZrO2/rGO NCs exhibited a dose-dependent cytotoxicity pattern. The cell viability (%) drastically decreases up to 96-98% after exposure to an optimal concentration of 10 ppm nanocomposites. Analysis of both the reactive oxygen species generation and the Annexin V-FTIC staining assays reveal that ZrO2/rGO NCs have the ability to induce apoptosis in A549 and HCT116 cell lines. Thus, the green synthesis of ZrO2/rGO NCs shows potential in developing efficient therapeutic agents for cancer therapy.

7.
ACS Omega ; 7(35): 30794-30800, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092631

RESUMEN

Recent investigations have demonstrated that nickel ferrite nanoparticles and their derivatives have toxicity effects on bacterial cells. In this study, we have prepared nickel ferrite nanoparticles (Ni/NiFe2O4) and nickel/nickel ferrite graphene oxide (Ni/NiFe2O4-GO) nanocomposite and evaluated their toxic effects on E. coli cells ATCC 25922. The prepared nanomaterials were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry techniques. The toxicity was evaluated using variations in cell viability, cell morphology, protein degradation, and oxidative stress. Ni/NiFe2O4-GO nanocomposites likewise prompt oxidative stress proved by the age of reactive oxygen species (ROS) and exhaustion of antioxidant glutathione. This is the first report indicating that Ni/NiFe2O4-GO nanocomposite-initiated cell death in E. coli through ROS age and oxidative stress.

8.
ACS Omega ; 7(30): 26174-26189, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936468

RESUMEN

This article reports a benign environmentally friendly fabrication method of titanium dioxide (TDO) nanoparticles (named TDO NPs3, TDO NPs5, and TDO NPs8) using aqueous extract of durva herb waste. This synthesis process avoids use of harmful substances and persistent chemicals throughout the order and enables us to control the size of the nanomaterials. Characterization of TDO nanoparticles was analyzed by ultraviolet-visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The morphological nature of the TDO samples was inspected by transmission electron microscopy, which indicated that the TDO NPs3, TDO NPs5, and TDO NPs8 were spherical in shape, with average sizes of 5.14, 12.54, and 29.61 nm, respectively. The stability of TDO nanoparticles was assessed using thermogravimetric analysis and dynamic light scattering analysis. These samples could be used for degradation of polluting industrial textile dyes, such as methylene blue (MB) and rhodamine B (Rh-B). Remarkably, the TDO NPs3 sample (5.14 nm size) exhibits a noticeable degradation of the MB dye in a shorter time period (50 min) than the TDO NPs8 sample with a size of 29.61 nm (120 min). The TDO NPs3 sample was also tested for degradation of Rh-B dye, showing high degradation efficiency over a short period of time (60 min). In contrast, the TDO NPs8 sample showed degradation of the Rh-B dye in 120 min. The effect of the dye concentration and the catalyst dose to remove dye pollutants has also been investigated. The synthesized TDO NPs act as exceptional catalysts for the degradation of dyes, and they are promising materials for the degradation of industrial polluting dyes.

9.
ACS Omega ; 7(18): 15423-15438, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35571823

RESUMEN

The sustainable synthesis of metal oxide materials provides an ecofriendly and more exciting approach in the domain of a clean environment. Besides, plant extracts to synthesize nanoparticles have been considered one of the more superior ecofriendly methods. This paper describes the biosynthetic preparation route of three different sizes of tetragonal structure SnO2 nanoparticles (SNPs) from the agro-waste cotton boll peel aqueous extract at 200, 500, and 800 °C for 3 h and represents a low-cost and alternative preparation method. The samples were characterized by X-ray diffraction, Fourier transform infrared spectrophotometry, ultraviolet-visible absorption spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy. Surface area and porosity size distribution were identified by nitrogen adsorption-desorption isotherms and Brunauer-Emmett-Teller analysis. The photocatalytic properties of the SNP samples were studied against methylene blue (MB) and methyl orange (MO), and the degradation was evaluated with three different size nanomaterials of 3.97, 8.48, and 13.43 nm. Photocatalytic activities were carried out under a multilamp (125 W Hg lamps) photoreactor. The smallest size sample exhibited the highest MB degradation efficiency within 30 min than the most significant size sample, which lasted 80 min. Similarly, in the case of MO, the smallest sample showed a more superior degradation efficiency with a shorter period (40 min) than the large-size samples (100 min). Therefore, our studies suggested that the developed SNP nanomaterials could be potential, promising photocatalysts against the degradation of industrial effluents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...