Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 14(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38671983

RESUMEN

Glioblastoma multiforme (GBM) stands out as the most tremendous brain tumor, constituting 60% of primary brain cancers, accompanied by dismal survival rates. Despite advancements in research, therapeutic options remain limited to chemotherapy and surgery. GBM molecular heterogeneity, the intricate interaction with the tumor microenvironment (TME), and non-selective treatments contribute to the neoplastic relapse. Diagnostic challenges arise from GBM advanced-stage detection, necessitating the exploration of novel biomarkers for early diagnosis. Using data from the literature and a bioinformatic tool, the current manuscript delineates the molecular interplay between human GBM, astrocytes, and myeloid cells, underscoring selected protein pathways belonging to astroglia and myeloid lineage, which can be considered for targeted therapies. Moreover, the pivotal role of extracellular vesicles (EVs) in orchestrating a favorable microenvironment for cancer progression is highlighted, suggesting their utility in identifying biomarkers for GBM early diagnosis.

2.
Biomedicines ; 12(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38540290

RESUMEN

The study aimed to evaluate the effects of monoclonal antibodies (mAbs) acting on the calcitonin gene-related peptide (CGRP) or its receptor (anti-CGRP/R mAbs) on migraine comorbidities of depression, anxiety, and fatigue in patients resistant to traditional therapies. The issue addressed in this study is pivotal to unveiling the role of this neurotransmitter beyond pain processing. We conducted an open-label prospective study assessing comorbidities in patients with high frequency (HFEM) and chronic migraine (CM), medication overuse headache (MOH), and resistance to traditional prophylaxis. All patients were treated with anti-CGRP/R mAbs for 3 months. Seventy-seven patients were enrolled with either HFEM (21%) or CM (79%) with or without MOH (56% and 44%, respectively). We identified 21 non-responders (27%) and 56 responders (73%), defined on the reduction ≥50% of headache frequency. The two groups were highly homogeneous for the investigated comorbidities. Disease severity in terms of headache frequency, migraine-related disability, and affective comorbid symptoms was reduced in both groups with different thresholds; allodynia and fatigue were ameliorated only in responders. We found that anti-CGRP/R antibodies improved pain together with affection, fatigue, and sensory sensitization in a cohort of migraine patients resistant to traditional prophylaxis. Our results offer novel perspectives on the early efficacy of anti-CGRP/R mAbs in difficult-to-treat patients focusing on clinical features other than pain relief.

3.
FEBS J ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38362803

RESUMEN

Neuronal differentiation is regulated by nerve growth factor (NGF) and other neurotrophins. We explored the impact of NGF on mitochondrial dynamics and metabolism through time-lapse imaging, metabolomics profiling, and computer modeling studies. We show that NGF may direct differentiation by stimulating fission, thereby causing selective mitochondrial network fragmentation and mitophagy, ultimately leading to increased mitochondrial quality and respiration. Then, we reconstructed the dynamic fusion-fission-mitophagy cycling of mitochondria in a computer model, integrating these processes into a single network mechanism. Both the computational model and the simulations are able to reproduce the proposed mechanism in terms of mitochondrial dynamics, levels of reactive oxygen species (ROS), mitophagy, and mitochondrial quality, thus providing a computational tool for the interpretation of the experimental data and for future studies aiming to detail further the action of NGF on mitochondrial processes. We also show that changes in these mitochondrial processes are intertwined with a metabolic function of NGF in differentiation: NGF directs a profound metabolic rearrangement involving glycolysis, TCA cycle, and the pentose phosphate pathway, altering the redox balance. This metabolic rewiring may ensure: (a) supply of both energy and building blocks for the anabolic processes needed for morphological reorganization, as well as (b) redox homeostasis.

5.
J Clin Med ; 12(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37109121

RESUMEN

INTRODUCTION: Bacterial prostatitis (BP) is a common prostatic infection characterized by a bimodal distribution in young and older men, with a prevalence between 5-10% among all cases of prostatitis and a high impact on quality of life. Although the management of bacterial prostatitis involves the use of appropriate spectrum antibiotics, which represent the first choice of treatment, a multimodal approach encompassing antibiotics and nutraceutical products in order to improve the efficacy of chosen antimicrobial regimen is often required. OBJECTIVE: To evaluate the efficacy of Flogofilm® in association with fluoroquinolones in patients with chronic bacterial prostatitis (CBP). METHODS: Patients diagnosed with prostatitis (positivity to Meares-Stamey Test and symptoms duration > 3 months) at the University of Naples "Federico II", Italy, from July 2021 to December 2021, were included in this study. All patients underwent bacterial cultures and trans-rectal ultrasounds. Patients were randomized into two groups (A and B) receiving antibiotic alone or an association of antibiotics plus Flogofilm® tablets containing Flogomicina® for one month, respectively. The NIH-CPSI and IPSS questionnaires were administered at baseline, four weeks, twelve and twenty-four weeks. RESULTS: A total of 96 (Group A = 47, Group B = 49) patients concluded the study protocol. The mean age was comparable, with a mean age of 34.62 ± 9.04 years for Group A and 35.29 ± 10.32 years for Group B (p = 0.755), and IPSS at the baseline was 8.28 ± 6.33 and 9.88 ± 6.89 (p = 0.256), respectively, while NIH-CPSI at baseline was 21.70 ± 4.38 and 21.67 ± 6.06 (p = 0.959), respectively. At 1, 3 and 6 months, the IPSS score was 6.45 ± 4.8 versus 4.31 ± 4.35 (p = 0.020), 5.32 ± 4.63 versus 3.20 ± 3.05 (p = 0.042) and 4.91 ± 4.47 versus 2.63 ± 3.28 (p = 0.005) for Groups A and B, respectively. Similarly, the NIH-CPSI total score at 1, 3 and 6 months was 16.15 ± 3.31 versus 13.10 ± 5.03 (p < 0.0001), 13.47 ± 3.07 versus 9.65 ± 4.23 (p < 0.0001) and 9.83 ± 2.53 versus 5.51 ± 2.84 (p < 0.0001), respectively. CONCLUSIONS: Flogofilm®, associated with fluoroquinolones, demonstrate a significant improvement in pain, urinary symptoms and quality of life in patients affected by chronic bacterial prostatitis in both IPSS and NIH-CPSI scores compared with fluoroquinolones alone.

6.
Thromb Haemost ; 123(8): 808-839, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36913975

RESUMEN

The Fourth Maastricht Consensus Conference on Thrombosis included the following themes. Theme 1: The "coagulome" as a critical driver of cardiovascular disease. Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow, and kidney. Four investigators shared their views on these organ-specific topics. Theme 2: Novel mechanisms of thrombosis. Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infection-associated coagulopathies perturb the hemostatic balance resulting in thrombosis and/or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies. This theme included state-of-the-art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: the value and limitations of ex vivo models. Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularized organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation-associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management. Plenary presentations addressed controversial areas, i.e., thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies, and clinically tested factor XI(a) inhibitors, both possibly with reduced bleeding risk. Finally, COVID-19-associated coagulopathy is revisited.


Asunto(s)
Trastornos de la Coagulación Sanguínea , COVID-19 , Trombosis , Humanos , Anticoagulantes/uso terapéutico , Coagulación Sanguínea , Hemostasis , Trastornos de la Coagulación Sanguínea/tratamiento farmacológico , Hemorragia/tratamiento farmacológico
8.
Arch Ital Urol Androl ; 95(4): 12155, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38193217

RESUMEN

BACKGROUND: The prevalence of kidney stones tends to increase worldwide due to dietary and climate changes. Disease management involves a high consumption of healthcare system resources which can be reduced with primary prevention measures and prophylaxis of recurrences. In this field, collaboration between general practitioners (GPs) and hospitals is crucial. METHODS: a panel composed of general practitioners and academic and hospital clinicians expert in the treatment of urinary stones met with the aim of identifying the activities that require the participation of the GP in the management process of the kidney stone patient. RESULTS: Collaboration between GP and hospital was found crucial in the treatment of renal colic and its infectious complications, expulsive treatment of ureteral stones, chemolysis of uric acid stones, long-term follow-up after active treatment of urinary stones, prevention of recurrence and primary prevention in the general population. CONCLUSIONS: The role of the GP is crucial in the management and prevention of urinary stones. Community hospitals which are normally led by GPs in liaison with consultants and other health professional can have a role in assisting multidisciplinary working as extended primary care.


Asunto(s)
Cálculos Renales , Cálculos Ureterales , Cálculos Urinarios , Urolitiasis , Humanos , Cálculos Urinarios/terapia , Cálculos Ureterales/terapia , Hospitales
9.
Cells ; 11(24)2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36552867

RESUMEN

Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are incurable autoimmune diseases characterized by chronic inflammation of the gastrointestinal tract. There is increasing evidence that inappropriate interaction between the enteric nervous system and central nervous system and/or low activity of the vagus nerve, which connects the enteric and central nervous systems, could play a crucial role in their pathogenesis. Therefore, it has been suggested that appropriate neuroprosthetic stimulation of the vagus nerve could lead to the modulation of the inflammation of the gastrointestinal tract and consequent long-term control of these autoimmune diseases. In the present paper, we provide a comprehensive overview of (1) the cellular and molecular bases of the immune system, (2) the way central and enteric nervous systems interact and contribute to the immune responses, (3) the pathogenesis of the inflammatory bowel disease, and (4) the therapeutic use of vagus nerve stimulation, and in particular, the transcutaneous stimulation of the auricular branch of the vagus nerve. Then, we expose the working hypotheses for the modulation of the molecular processes that are responsible for intestinal inflammation in autoimmune diseases and the way we could develop personalized neuroprosthetic therapeutic devices and procedures in favor of the patients.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Estimulación del Nervio Vago , Humanos , Enfermedad de Crohn/terapia , Estimulación del Nervio Vago/métodos , Enfermedades Inflamatorias del Intestino/terapia , Inflamación
10.
Medicina (Kaunas) ; 58(11)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36363477

RESUMEN

Background and Objective: Blood loss represents a long-standing concern of radical prostatectomy (RP). This study aimed to assess how red line cell values changed following robot-assisted radical prostatectomy (RARP) for prostate cancer (PCa). Materials and Methods: The blood panels of 453 consecutive PCa patients undergoing RARP at a single tertiary academic referral center, from September 2020 to April 2022, were reviewed. Data from 363 patients with the blood panel available for the following timeframe: within seven days before surgery, six hours after surgery, and the first three postoperative days, were analyzed. Specifically, hemoglobin (Hb, g/dL), red blood cells (RBCs, ×106/µL), and hematocrit (HCT, %) trends were collected. Results: Considering the Hb trend, the median values in the preoperative day, postoperative day (POD) 2, and POD 3 are 14.7 (interquartile range (IQR) = 13.9−15.4), 12.1 (IQR = 11.2−12.9), and 12.2 (IQR = 11.2−13.1), respectively. The ∆ between preoperative day and POD 2 is 2.5 (IQR = 1.8−3.2) (p < 0.001). Considering the RBCs trend, the median values in the preoperative day, POD 2, and POD 3 are 4.9 (IQR = 4.7−5.3), 4.1 (IQR = 3.8−4.4), and 4.1 (IQR = 3.8−4.5), respectively. The ∆ between preoperative day and POD 2 is 0.9 (IQR = 0.6−1.1) (p < 0.001). Considering the HCT trend, the median values in the preoperative day, POD 2, and POD 3 are 44.4 (IQR = 41.7−46.6), 36.4 (IQR = 33.8−38.9), and 36.1 (IQR = 33.5−38.7), respectively. The ∆ between preoperative day and POD 2 is 7.8 (IQR = 5.2−10.5) (p < 0.001). Conclusions: Overall, patients undergoing RARP experience a significant, but clinically limited, decline in red line cell values between the preoperative time and the second day post-surgery. These observations are important to provide physicians with knowledge of the expected postoperative course and, thus, to improve the quality of patient care.


Asunto(s)
Neoplasias de la Próstata , Procedimientos Quirúrgicos Robotizados , Robótica , Masculino , Humanos , Resultado del Tratamiento , Prostatectomía , Neoplasias de la Próstata/cirugía , Eritrocitos , Línea Celular
11.
J Clin Med ; 11(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36233402

RESUMEN

Migraine is a common yet enigmatic disease that, despite its high prevalence and familial presentation, lacks exhaustive genetic or environmental causative factors [...].

12.
Mol Neurobiol ; 59(11): 6857-6873, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36048342

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with a malignant prognosis. GBM is characterized by high cellular heterogeneity and its progression relies on the interaction with the central nervous system, which ensures the immune-escape and tumor promotion. This interplay induces metabolic, (epi)-genetic and molecular rewiring in both domains. In the present study, we aim to characterize the time-related changes in the GBM landscape, using a syngeneic mouse model of primary GBM. GL261 glioma cells were injected in the right striatum of immuno-competent C57Bl/6 mice and animals were sacrificed after 7, 14, and 21 days (7D, 14D, 21D). The tumor development was assessed through 3D tomographic imaging and brains were processed for immunohistochemistry, immunofluorescence, and western blotting. A human transcriptomic database was inquired to support the translational value of the experimental data. Our results showed the dynamic of the tumor progression, being established as a bulk at 14D and surrounded by a dense scar of reactive astrocytes. The GBM growth was paralleled by the impairment in the microglial/macrophagic recruitment and antigen-presenting functions, while the invasive phase was characterized by changes in the extracellular matrix, as shown by the analysis of tenascin C and metalloproteinase-9. The present study emphasizes the role of the molecular changes in the microenvironment during the GBM progression, fostering the development of novel multi-targeted, time-dependent therapies in an experimental model similar to the human disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Escape del Tumor , Microambiente Tumoral , Animales , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/inmunología , Glioblastoma/patología , Glioma/inmunología , Glioma/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Tenascina/metabolismo
13.
Diagnostics (Basel) ; 12(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35453843

RESUMEN

The diagnosis of neurodegenerative diseases (NDDs) represents an increasing social burden, with the unsolved issue of disease-modifying therapies (DMTs). The failure of clinical trials treating Alzheimer's Disease (AD) so far highlighted the need for a different approach in drug design and patient selection. Identifying subjects in the prodromal or early symptomatic phase is critical to slow down neurodegeneration, but the implementation of screening programs with this aim will have an ethical and social aftermath. Novel minimally invasive candidate biomarkers (derived from blood, saliva, olfactory brush) or classical cerebrospinal fluid (CSF) biomarkers have been developed in research settings to stratify patients with NDDs. Misfolded protein accumulation, neuroinflammation, and synaptic loss are the pathophysiological hallmarks detected by these biomarkers to refine diagnosis, prognosis, and target engagement of drugs in clinical trials. We reviewed fluid biomarkers of NDDs, considering their potential role as screening, diagnostic, or prognostic tool, and their present-day use in clinical trials (phase II and III). A special focus will be dedicated to novel techniques for the detection of misfolded proteins. Eventually, an applicative diagnostic algorithm will be proposed to translate the research data in clinical practice and select prodromal or early patients to be enrolled in the appropriate DMTs trials for NDDs.

14.
Cells ; 11(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35456027

RESUMEN

Glioblastoma (GBM) are among the most common malignant central nervous system (CNS) cancers, they are relatively rare. This evidence suggests that the CNS microenvironment is naturally equipped to control proliferative cells, although, rarely, failure of this system can lead to cancer development. Moreover, the adult CNS is innately non-permissive to glioma cell invasion. Thus, glioma etiology remains largely unknown. In this review, we analyze the anatomical and biological basis of gliomagenesis considering neural stem cells, the spatiotemporal diversity of astrocytes, microglia, neurons and glutamate transporters, extracellular matrix and the peritumoral environment. The precise understanding of subpopulations constituting GBM, particularly astrocytes, is not limited to glioma stem cells (GSC) and could help in the understanding of tumor pathophysiology. The anatomical fingerprint is essential for non-invasive assessment of patients' prognosis and correct surgical/radiotherapy planning.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Astrocitos/patología , Biología , Neoplasias Encefálicas/patología , Glioblastoma/patología , Glioma/patología , Humanos , Microambiente Tumoral
15.
Expert Rev Mol Diagn ; 22(4): 411-425, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35443850

RESUMEN

INTRODUCTION: α-syn aggregates represent the pathological hallmark of synucleinopathies as well as a frequent copathology (almost 1/3 of cases) in AD. Recent research indicates a potential role of α-syn species, measured in CSF with conventional analytical techniques, in the differential diagnosis between AD and synucleinopathies (such as DLB). Pioneering studies report the detection of α-syn in blood, however, conclusive investigations are controversial. Ultrasensitive seed amplification techniques, enabling the selective quantification of α-syn seeds, may represent an effective solution to identify the α-syn component in AD and facilitate a biomarker-guided stratification. AREAS COVERED: We performed a PubMed-based review of the latest findings on α-syn-related biomarkers for AD, focusing on bodily fluids. A dissertation on the role of ultrasensitive seed amplification assays, detecting α-syn seeds from different biological samples, was conducted. EXPERT OPINION: α-syn may contribute to progressive AD neurodegeneration through cross-seeding especially with tau protein. Ultrasensitive seed amplification techniques may support a biomarker-drug co-development pathway and may be a pathophysiological candidate biomarker for the evolving ATX(N) system to classify AD and the spectrum of primary NDDs. This would contribute to a precise approach to AD, aimed at implementing disease-modifying treatments.


Asunto(s)
Enfermedad de Alzheimer , Sinucleinopatías , alfa-Sinucleína , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Biomarcadores , Diagnóstico Diferencial , Humanos , alfa-Sinucleína/metabolismo
16.
Cells ; 11(7)2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35406788

RESUMEN

The maladaptive response of the central nervous system (CNS) following nerve injury is primarily linked to the activation of glial cells (reactive gliosis) that produce an inflammatory reaction and a wide cellular morpho-structural and functional/metabolic remodeling. Glial acidic fibrillary protein (GFAP), a major protein constituent of astrocyte intermediate filaments (IFs), is the hallmark of the reactive astrocytes, has pleiotropic functions and is significantly upregulated in the spinal cord after nerve injury. Here, we investigated the specific role of GFAP in glial reaction and maladaptive spinal cord plasticity following sciatic nerve spared nerve injury (SNI) in GFAP KO and wild-type (WT) animals. We evaluated the neuropathic behavior (thermal hyperalgesia, allodynia) and the expression of glial (vimentin, Iba1) and glutamate/GABA system markers (GLAST, GLT1, EAAC1, vGLUT, vGAT, GAD) in lumbar spinal cord sections of KO/WT animals. SNI induced neuropathic behavior in both GFAP KO and WT mice, paralleled by intense microglial reaction (Iba1 expression more pronounced in KO mice), reactive astrocytosis (vimentin increase) and expression remodeling of glial/neuronal glutamate/GABA transporters. In conclusion, it is conceivable that the lack of GFAP could be detrimental to the CNS as it lacks a critical sensor for neuroinflammation and morpho-functional-metabolic rewiring after nerve injury. Understanding the maladaptive morpho-functional changes of glial cells could represent the first step for a new glial-based targeted approach for mechanisms of disease in the CNS.


Asunto(s)
Traumatismos de los Nervios Periféricos , Animales , Gliosis/metabolismo , Ácido Glutámico/metabolismo , Homeostasis , Hiperalgesia , Ratones , Ratones Noqueados , Neuroglía/metabolismo , Vimentina
17.
Histochem Cell Biol ; 157(5): 557-567, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35175413

RESUMEN

Activation of glial cells (reactive gliosis) and the purinergic pathway, together with metalloproteinase (MMP)-induced remodeling of the neural extracellular matrix (nECM), drive maladaptive changes in the spinal cord following peripheral nerve injury (PNI). We evaluated the effects on spinal maladaptive plasticity through administration of oxidized ATP (oxATP), an antagonist of P2X receptors (P2XR), and/or GM6001, an inhibitor of MMPs, in rats following spared nerve injury (SNI) of the sciatic nerve. With morpho-molecular techniques, we demonstrated a reduction in spinal reactive gliosis and changes in the neuro-glial-nECM crosstalk via expression remodeling of P2XR, nerve growth factor (NGF) receptors (TrkA and p75), and histone deacetylase 2 (HDAC2) after treatments with oxATP/GM6001. Altogether, our data suggest that MMPs and purinergic inhibition have a modulatory impact on key proteins in the neuro-glial-nECM network, acting at different levels from intracellular signaling to epigenetic modifications.


Asunto(s)
Traumatismos de los Nervios Periféricos , Animales , Gliosis/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Ratas , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Médula Espinal/metabolismo
18.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768733

RESUMEN

The spatial and temporal coordination of each element is a pivotal characteristic of systems, and the central nervous system (CNS) is not an exception. Glial elements and the vascular interface have been considered more recently, together with the extracellular matrix and the immune system. However, the knowledge of the single-element configuration is not sufficient to predict physiological or pathological long-lasting changes. Ionic currents, complex molecular cascades, genomic rearrangement, and the regional energy demand can be different even in neighboring cells of the same phenotype, and their differential expression could explain the region-specific progression of the most studied neurodegenerative diseases. We here reviewed the main nodes and edges of the system, which could be studied to develop a comprehensive knowledge of CNS plasticity from the neurovascular unit to the synaptic cleft. The future goal is to redefine the modeling of synaptic plasticity and achieve a better understanding of neurological diseases, pointing out cellular, subcellular, and molecular components that couple in specific neuroanatomical and functional regions.


Asunto(s)
Sistema Nervioso Central/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Animales , Astrocitos/metabolismo , Sistema Nervioso Central/fisiopatología , Humanos , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuroglía/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Análisis Espacio-Temporal , Sinapsis/metabolismo
19.
J Clin Med ; 10(19)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34640604

RESUMEN

Patients with high-frequency resistant migraine and medication-overuse headache are still the main clinical challenge in tertiary headache centers. The approval of targeted antibodies against the calcitonin gene-related peptide (CGRP) and its receptor represents a powerful instrument. In this study, we observed how biological and clinical features of resistant migraineurs responded to erenumab, fremanezumab, or galcanezumab. We found a reduction in advanced oxidation protein products (AOPP) as a biomarker of improved redox state after six months of treatment. We also found that treatment efficacy was precocious and maintained with high individual responder rates. In particular, seven out of ten patients achieved a reduction of 50% from the baseline at three months, which was maintained at six months, while about one out of our patients experienced a 75% reduction in headache frequency from the first month of treatment. The migraine disability assessment (MIDAS) and the associated fatigue, anxiety, and sleep quality also significantly improved. The allodynia symptom dropped from moderate/severe to mild/absent as a sign of central sensitization reduction. Our study confirmed the safety and efficacy of CGRP inhibition in real-life, high-challenging patients. Additional evidence is needed to understand the role of oxidative stress as a migraine biomarker.

20.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804873

RESUMEN

Different functional states determine glioblastoma (GBM) heterogeneity. Brain cancer cells coexist with the glial cells in a functional syncytium based on a continuous metabolic rewiring. However, standard glioma therapies do not account for the effects of the glial cells within the tumor microenvironment. This may be a possible reason for the lack of improvements in patients with high-grade gliomas therapies. Cell metabolism and bioenergetic fitness depend on the availability of nutrients and interactions in the microenvironment. It is strictly related to the cell location in the tumor mass, proximity to blood vessels, biochemical gradients, and tumor evolution, underlying the influence of the context and the timeline in anti-tumor therapeutic approaches. Besides the cancer metabolic strategies, here we review the modifications found in the GBM-associated glia, focusing on morphological, molecular, and metabolic features. We propose to analyze the GBM metabolic rewiring processes from a systems biology perspective. We aim at defining the crosstalk between GBM and the glial cells as modules. The complex networking may be expressed by metabolic modules corresponding to the GBM growth and spreading phases. Variation in the oxidative phosphorylation (OXPHOS) rate and regulation appears to be the most important part of the metabolic and functional heterogeneity, correlating with glycolysis and response to hypoxia. Integrated metabolic modules along with molecular and morphological features could allow the identification of key factors for controlling the GBM-stroma metabolism in multi-targeted, time-dependent therapies.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Microambiente Tumoral , Animales , Neoplasias Encefálicas/patología , Glioblastoma/patología , Humanos , Hipoxia Tumoral , Efecto Warburg en Oncología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...