Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 5981, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045883

RESUMEN

April 15th, 2019: Notre-Dame Cathedral in Paris was burning, the spire collapsed on the nave, vaults crumbled and most of the timber roof was gone. In the post-disaster context, the authenticity and the monitoring of the archaeological remains are crucial for their potential reuse during reconstruction. This paper analyzes the collapsed transverse arch from the nave of Notre-Dame as a case study of reconstruction, using the digital twin framework. We propose four facets for the digital twin experiment-physical anastylosis, reverse engineering, spatio-temporal tracking of assets, and operational research-that are described in detail, while being assembled to support a hybrid reconstruction hypothesis. The digital twin can realize the parallel unfolding of physical-native and digital-native processes, while acquiring and storing heterogeneous information as semantically structured data. The results demonstrate that the proposed modeling method facilitates the formalization and validation of the reconstruction problem and increases solutions performances. As result, we present a digital twin framework application ranging from acquisition to data processing that informs a successful hybrid reconstruction hypothesis.

2.
Sensors (Basel) ; 23(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36904701

RESUMEN

We propose a semi-automatic Scan-to-BIM reconstruction approach, making the most of Artificial Intelligence (AI) techniques, for the classification of digital architectural heritage data. Nowadays, Heritage- or Historic-Building Information Modeling (H-BIM) reconstruction from laser scanning or photogrammetric surveys is a manual, time-consuming, overly subjective process, but the emergence of AI techniques, applied to the realm of existing architectural heritage, is offering new ways to interpret, process and elaborate raw digital surveying data, as point clouds. The proposed methodological approach for higher-level automation in Scan-to-BIM reconstruction is threaded as follows: (i) semantic segmentation via Random Forest and import of annotated data in 3D modeling environment, broken down class by class; (ii) reconstruction of template geometries of classes of architectural elements; (iii) propagation of template reconstructed geometries to all elements belonging to a typological class. Visual Programming Languages (VPLs) and reference to architectural treatises are leveraged for the Scan-to-BIM reconstruction. The approach is tested on several significant heritage sites in the Tuscan territory, including charterhouses and museums. The results suggest the replicability of the approach to other case studies, built in different periods, with different construction techniques or under different states of conservation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA