Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934791

RESUMEN

We have recently introduced MAPLE (MAximum Parsimonious Likelihood Estimation), a new pandemic-scale phylogenetic inference method exclusively designed for genomic epidemiology. In response to the need for enhancing MAPLE's performance and scalability, here we present two key components: (1) CMAPLE software, a highly optimized C++ reimplementation of MAPLE with many new features and advancements; and (2) CMAPLE library, a suite of Application Programming Interfaces to facilitate the integration of the CMAPLE algorithm into existing phylogenetic inference packages. Notably, we have successfully integrated CMAPLE into the widely used IQ-TREE 2 software, enabling its rapid adoption in the scientific community. These advancements serve as a vital step towards better preparedness for future pandemics, offering researchers powerful tools for large-scale pathogen genomic analysis.

2.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746185

RESUMEN

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites. In combination with the disparate set of genome assembly workflows and lack of consistent quality control (QC) processes, the current genomes have many systematic errors that have evolved with the virus and amplicon schemes. These errors have significant impacts on the phylogeny, and therefore over the last few years, many thousands of hours of researchers time has been spent in "eyeballing" trees, looking for artefacts, and then patching the tree. Given the huge value of this dataset, we therefore set out to reprocess the complete set of public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny. Here we provide a global tree of 3,960,704 samples, built from a consistently assembled set of high quality consensus sequences from all available public data as of March 2023, viewable at https://viridian.taxonium.org. Each genome was constructed using a novel assembly tool called Viridian (https://github.com/iqbal-lab-org/viridian), developed specifically to process amplicon sequence data, eliminating artefactual errors and mask the genome at low quality positions. We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny. Phase 2 of our project will address the fact that the data in the public archives is heavily geographically biased towards the Global North. We therefore have contributed new raw data to ENA/SRA from many countries including Ghana, Thailand, Laos, Sri Lanka, India, Argentina and Singapore. We will incorporate these, along with all public raw data submitted between March 2023 and the current day, into an updated set of assemblies, and phylogeny. We hope the tree, consensus sequences and Viridian will be a valuable resource for researchers.

3.
Virus Evol ; 10(1): vead085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361813

RESUMEN

With the rapid spread and evolution of SARS-CoV-2, the ability to monitor its transmission and distinguish among viral lineages is critical for pandemic response efforts. The most commonly used software for the lineage assignment of newly isolated SARS-CoV-2 genomes is pangolin, which offers two methods of assignment, pangoLEARN and pUShER. PangoLEARN rapidly assigns lineages using a machine-learning algorithm, while pUShER performs a phylogenetic placement to identify the lineage corresponding to a newly sequenced genome. In a preliminary study, we observed that pangoLEARN (decision tree model), while substantially faster than pUShER, offered less consistency across different versions of pangolin v3. Here, we expand upon this analysis to include v3 and v4 of pangolin, which moved the default algorithm for lineage assignment from pangoLEARN in v3 to pUShER in v4, and perform a thorough analysis confirming that pUShER is not only more stable across versions but also more accurate. Our findings suggest that future lineage assignment algorithms for various pathogens should consider the value of phylogenetic placement.

4.
Syst Biol ; 72(5): 1039-1051, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37232476

RESUMEN

Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in genomic surveillance, contact tracing, and assessing emergence and spread of new variants. However, phylogenetic analyses of SARS-CoV-2 have often relied on tools designed for de novo phylogenetic inference, in which all data are collected before any analysis is performed and the phylogeny is inferred once from scratch. SARS-CoV-2 data sets do not fit this mold. There are currently over 14 million sequenced SARS-CoV-2 genomes in online databases, with tens of thousands of new genomes added every day. Continuous data collection, combined with the public health relevance of SARS-CoV-2, invites an "online" approach to phylogenetics, in which new samples are added to existing phylogenetic trees every day. The extremely dense sampling of SARS-CoV-2 genomes also invites a comparison between likelihood and parsimony approaches to phylogenetic inference. Maximum likelihood (ML) and pseudo-ML methods may be more accurate when there are multiple changes at a single site on a single branch, but this accuracy comes at a large computational cost, and the dense sampling of SARS-CoV-2 genomes means that these instances will be extremely rare because each internal branch is expected to be extremely short. Therefore, it may be that approaches based on maximum parsimony (MP) are sufficiently accurate for reconstructing phylogenies of SARS-CoV-2, and their simplicity means that they can be applied to much larger data sets. Here, we evaluate the performance of de novo and online phylogenetic approaches, as well as ML, pseudo-ML, and MP frameworks for inferring large and dense SARS-CoV-2 phylogenies. Overall, we find that online phylogenetics produces similar phylogenetic trees to de novo analyses for SARS-CoV-2, and that MP optimization with UShER and matOptimize produces equivalent SARS-CoV-2 phylogenies to some of the most popular ML and pseudo-ML inference tools. MP optimization with UShER and matOptimize is thousands of times faster than presently available implementations of ML and online phylogenetics is faster than de novo inference. Our results therefore suggest that parsimony-based methods like UShER and matOptimize represent an accurate and more practical alternative to established ML implementations for large SARS-CoV-2 phylogenies and could be successfully applied to other similar data sets with particularly dense sampling and short branch lengths.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Filogenia , Probabilidad , Genómica
5.
Nat Genet ; 55(5): 746-752, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37038003

RESUMEN

Phylogenetics has a crucial role in genomic epidemiology. Enabled by unparalleled volumes of genome sequence data generated to study and help contain the COVID-19 pandemic, phylogenetic analyses of SARS-CoV-2 genomes have shed light on the virus's origins, spread, and the emergence and reproductive success of new variants. However, most phylogenetic approaches, including maximum likelihood and Bayesian methods, cannot scale to the size of the datasets from the current pandemic. We present 'MAximum Parsimonious Likelihood Estimation' (MAPLE), an approach for likelihood-based phylogenetic analysis of epidemiological genomic datasets at unprecedented scales. MAPLE infers SARS-CoV-2 phylogenies more accurately than existing maximum likelihood approaches while running up to thousands of times faster, and requiring at least 100 times less memory on large datasets. This extends the reach of genomic epidemiology, allowing the continued use of accurate phylogenetic, phylogeographic and phylodynamic analyses on datasets of millions of genomes.


Asunto(s)
COVID-19 , Humanos , Filogenia , COVID-19/epidemiología , COVID-19/genética , SARS-CoV-2/genética , Funciones de Verosimilitud , Pandemias , Teorema de Bayes
6.
Virus Evol ; 9(1): vead010, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860641

RESUMEN

Bayesian phylogeographic inference is a powerful tool in molecular epidemiological studies, which enables reconstruction of the origin and subsequent geographic spread of pathogens. Such inference is, however, potentially affected by geographic sampling bias. Here, we investigated the impact of sampling bias on the spatiotemporal reconstruction of viral epidemics using Bayesian discrete phylogeographic models and explored different operational strategies to mitigate this impact. We considered the continuous-time Markov chain (CTMC) model and two structured coalescent approximations (Bayesian structured coalescent approximation [BASTA] and marginal approximation of the structured coalescent [MASCOT]). For each approach, we compared the estimated and simulated spatiotemporal histories in biased and unbiased conditions based on the simulated epidemics of rabies virus (RABV) in dogs in Morocco. While the reconstructed spatiotemporal histories were impacted by sampling bias for the three approaches, BASTA and MASCOT reconstructions were also biased when employing unbiased samples. Increasing the number of analyzed genomes led to more robust estimates at low sampling bias for the CTMC model. Alternative sampling strategies that maximize the spatiotemporal coverage greatly improved the inference at intermediate sampling bias for the CTMC model, and to a lesser extent, for BASTA and MASCOT. In contrast, allowing for time-varying population sizes in MASCOT resulted in robust inference. We further applied these approaches to two empirical datasets: a RABV dataset from the Philippines and a SARS-CoV-2 dataset describing its early spread across the world. In conclusion, sampling biases are ubiquitous in phylogeographic analyses but may be accommodated by increasing the sample size, balancing spatial and temporal composition in the samples, and informing structured coalescent models with reliable case count data.

7.
Nat Biotechnol ; 41(7): 1018-1025, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36593407

RESUMEN

Nanopore sequencers can select which DNA molecules to sequence, rejecting a molecule after analysis of a small initial part. Currently, selection is based on predetermined regions of interest that remain constant throughout an experiment. Sequencing efforts, thus, cannot be re-focused on molecules likely contributing most to experimental success. Here we present BOSS-RUNS, an algorithmic framework and software to generate dynamically updated decision strategies. We quantify uncertainty at each genome position with real-time updates from data already observed. For each DNA fragment, we decide whether the expected decrease in uncertainty that it would provide warrants fully sequencing it, thus optimizing information gain. BOSS-RUNS mitigates coverage bias between and within members of a microbial community, leading to improved variant calling; for example, low-coverage sites of a species at 1% abundance were reduced by 87.5%, with 12.5% more single-nucleotide polymorphisms detected. Such data-driven updates to molecule selection are applicable to many sequencing scenarios, such as enriching for regions with increased divergence or low coverage, reducing time-to-answer.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Proyectos de Investigación , Teorema de Bayes , Genoma , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
8.
PLoS Comput Biol ; 18(8): e1010409, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36001646

RESUMEN

Accurate simulation of complex biological processes is an essential component of developing and validating new technologies and inference approaches. As an effort to help contain the COVID-19 pandemic, large numbers of SARS-CoV-2 genomes have been sequenced from most regions in the world. More than 5.5 million viral sequences are publicly available as of November 2021. Many studies estimate viral genealogies from these sequences, as these can provide valuable information about the spread of the pandemic across time and space. Additionally such data are a rich source of information about molecular evolutionary processes including natural selection, for example allowing the identification of new variants with transmissibility and immunity evasion advantages. To our knowledge, there is no framework that is both efficient and flexible enough to simulate the pandemic to approximate world-scale scenarios and generate viral genealogies of millions of samples. Here, we introduce a new fast simulator VGsim which addresses the problem of simulation genealogies under epidemiological models. The simulation process is split into two phases. During the forward run the algorithm generates a chain of population-level events reflecting the dynamics of the pandemic using an hierarchical version of the Gillespie algorithm. During the backward run a coalescent-like approach generates a tree genealogy of samples conditioning on the population-level events chain generated during the forward run. Our software can model complex population structure, epistasis and immunity escape.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Simulación por Computador , Humanos , SARS-CoV-2/genética , Programas Informáticos
9.
Nature ; 609(7929): 994-997, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35952714

RESUMEN

Accurate and timely detection of recombinant lineages is crucial for interpreting genetic variation, reconstructing epidemic spread, identifying selection and variants of interest, and accurately performing phylogenetic analyses1-4. During the SARS-CoV-2 pandemic, genomic data generation has exceeded the capacities of existing analysis platforms, thereby crippling real-time analysis of viral evolution5. Here, we use a new phylogenomic method to search a nearly comprehensive SARS-CoV-2 phylogeny for recombinant lineages. In a 1.6 million sample tree from May 2021, we identify 589 recombination events, which indicate that around 2.7% of sequenced SARS-CoV-2 genomes have detectable recombinant ancestry. Recombination breakpoints are inferred to occur disproportionately in the 3' portion of the genome that contains the spike protein. Our results highlight the need for timely analyses of recombination for pinpointing the emergence of recombinant lineages with the potential to increase transmissibility or virulence of the virus. We anticipate that this approach will empower comprehensive real-time tracking of viral recombination during the SARS-CoV-2 pandemic and beyond.


Asunto(s)
COVID-19 , Genoma Viral , Pandemias , Filogenia , Recombinación Genética , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Genoma Viral/genética , Humanos , Mutación , Recombinación Genética/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Selección Genética/genética , Glicoproteína de la Espiga del Coronavirus/genética , Virulencia/genética
11.
bioRxiv ; 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35611334

RESUMEN

Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in genomic surveillance, contact tracing, and assessing emergence and spread of new variants. However, phylogenetic analyses of SARS-CoV-2 have often relied on tools designed for de novo phylogenetic inference, in which all data are collected before any analysis is performed and the phylogeny is inferred once from scratch. SARS-CoV-2 datasets do not fit this mould. There are currently over 10 million sequenced SARS-CoV-2 genomes in online databases, with tens of thousands of new genomes added every day. Continuous data collection, combined with the public health relevance of SARS-CoV-2, invites an "online" approach to phylogenetics, in which new samples are added to existing phylogenetic trees every day. The extremely dense sampling of SARS-CoV-2 genomes also invites a comparison between likelihood and parsimony approaches to phylogenetic inference. Maximum likelihood (ML) methods are more accurate when there are multiple changes at a single site on a single branch, but this accuracy comes at a large computational cost, and the dense sampling of SARS-CoV-2 genomes means that these instances will be extremely rare because each internal branch is expected to be extremely short. Therefore, it may be that approaches based on maximum parsimony (MP) are sufficiently accurate for reconstructing phylogenies of SARS-CoV-2, and their simplicity means that they can be applied to much larger datasets. Here, we evaluate the performance of de novo and online phylogenetic approaches, and ML and MP frameworks, for inferring large and dense SARS-CoV-2 phylogenies. Overall, we find that online phylogenetics produces similar phylogenetic trees to de novo analyses for SARS-CoV-2, and that MP optimizations produce more accurate SARS-CoV-2 phylogenies than do ML optimizations. Since MP is thousands of times faster than presently available implementations of ML and online phylogenetics is faster than de novo , we therefore propose that, in the context of comprehensive genomic epidemiology of SARS-CoV-2, MP online phylogenetics approaches should be favored.

12.
PLoS Comput Biol ; 18(4): e1010056, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35486906

RESUMEN

Sequence simulators are fundamental tools in bioinformatics, as they allow us to test data processing and inference tools, and are an essential component of some inference methods. The ongoing surge in available sequence data is however testing the limits of our bioinformatics software. One example is the large number of SARS-CoV-2 genomes available, which are beyond the processing power of many methods, and simulating such large datasets is also proving difficult. Here, we present a new algorithm and software for efficiently simulating sequence evolution along extremely large trees (e.g. > 100, 000 tips) when the branches of the tree are short, as is typical in genomic epidemiology. Our algorithm is based on the Gillespie approach, and it implements an efficient multi-layered search tree structure that provides high computational efficiency by taking advantage of the fact that only a small proportion of the genome is likely to mutate at each branch of the considered phylogeny. Our open source software allows easy integration with other Python packages as well as a variety of evolutionary models, including indel models and new hypermutability models that we developed to more realistically represent SARS-CoV-2 genome evolution.


Asunto(s)
COVID-19 , Pandemias , Algoritmos , COVID-19/epidemiología , Simulación por Computador , Evolución Molecular , Humanos , Filogenia , SARS-CoV-2/genética , Programas Informáticos
13.
bioRxiv ; 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35350209

RESUMEN

Phylogenetics plays a crucial role in the interpretation of genomic data1. Phylogenetic analyses of SARS-CoV-2 genomes have allowed the detailed study of the virus's origins2, of its international3,4 and local4-9 spread, and of the emergence10 and reproductive success11 of new variants, among many applications. These analyses have been enabled by the unparalleled volumes of genome sequence data generated and employed to study and help contain the pandemic12. However, preferred model-based phylogenetic approaches including maximum likelihood and Bayesian methods, mostly based on Felsenstein's 'pruning' algorithm13,14, cannot scale to the size of the datasets from the current pandemic4,15, hampering our understanding of the virus's evolution and transmission16. We present new approaches, based on reworking Felsenstein's algorithm, for likelihood-based phylogenetic analysis of epidemiological genomic datasets at unprecedented scales. We exploit near-certainty regarding ancestral genomes, and the similarities between closely related and densely sampled genomes, to greatly reduce computational demands for memory and time. Combined with new methods for searching amongst candidate evolutionary trees, this results in our MAPLE ('MAximum Parsimonious Likelihood Estimation') software giving better results than popular approaches such as FastTree 217, IQ-TREE 218, RAxML-NG19 and UShER15. Our approach therefore allows complex and accurate probabilistic phylogenetic analyses of millions of microbial genomes, extending the reach of genomic epidemiology. Future epidemiological datasets are likely to be even larger than those currently associated with COVID-19, and other disciplines such as metagenomics and biodiversity science are also generating huge numbers of genome sequences20-22. Our methods will permit continued use of preferred likelihood-based phylogenetic analyses.

14.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930835

RESUMEN

Statistical phylogeography provides useful tools to characterize and quantify the spread of organisms during the course of evolution. Analyzing georeferenced genetic data often relies on the assumption that samples are preferentially collected in densely populated areas of the habitat. Deviation from this assumption negatively impacts the inference of the spatial and demographic dynamics. This issue is pervasive in phylogeography. It affects analyses that approximate the habitat as a set of discrete demes as well as those that treat it as a continuum. The present study introduces a Bayesian modeling approach that explicitly accommodates for spatial sampling strategies. An original inference technique, based on recent advances in statistical computing, is then described that is most suited to modeling data where sequences are preferentially collected at certain locations, independently of the outcome of the evolutionary process. The analysis of georeferenced genetic sequences from the West Nile virus in North America along with simulated data shows how assumptions about spatial sampling may impact our understanding of the forces shaping biodiversity across time and space.


Asunto(s)
Modelos Estadísticos , Filogeografía/métodos , Dinámica Poblacional , Algoritmos , Teorema de Bayes , Ecosistema , Evolución Molecular , Humanos , América del Norte , Análisis Espacial , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/genética
15.
Nature ; 600(7889): 506-511, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34649268

RESUMEN

The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Genoma Viral/genética , Genómica , SARS-CoV-2/genética , Sustitución de Aminoácidos , COVID-19/transmisión , Inglaterra/epidemiología , Monitoreo Epidemiológico , Humanos , Epidemiología Molecular , Mutación , Cuarentena/estadística & datos numéricos , SARS-CoV-2/clasificación , Análisis Espacio-Temporal , Glicoproteína de la Espiga del Coronavirus/genética
16.
Mol Biol Evol ; 38(12): 5819-5824, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34469548

RESUMEN

The vast scale of SARS-CoV-2 sequencing data has made it increasingly challenging to comprehensively analyze all available data using existing tools and file formats. To address this, we present a database of SARS-CoV-2 phylogenetic trees inferred with unrestricted public sequences, which we update daily to incorporate new sequences. Our database uses the recently proposed mutation-annotated tree (MAT) format to efficiently encode the tree with branches labeled with parsimony-inferred mutations, as well as Nextstrain clade and Pango lineage labels at clade roots. As of June 9, 2021, our SARS-CoV-2 MAT consists of 834,521 sequences and provides a comprehensive view of the virus' evolutionary history using public data. We also present matUtils-a command-line utility for rapidly querying, interpreting, and manipulating the MATs. Our daily-updated SARS-CoV-2 MAT database and matUtils software are available at http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/ and https://github.com/yatisht/usher, respectively.


Asunto(s)
Evolución Molecular , Filogenia , SARS-CoV-2 , COVID-19/virología , Humanos , Mutación , SARS-CoV-2/genética , Programas Informáticos
17.
Virus Evol ; 7(2): veab065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34532064

RESUMEN

Studies have shown that hepatitis C virus subtype 3a (HCV-3a) is likely to have been circulating in South Asia before its global spread. However, the time and route of this dissemination remain unclear. For the first time, we generated host and virus genome-wide data for more than 500 patients infected with HCV-3a from the UK, North America, Australia, and New Zealand. We used the host genomic data to infer the ancestry of the patients and used this information to investigate the epidemic history of HCV-3a. We observed that viruses from hosts of South Asian ancestry clustered together near the root of the tree, irrespective of the sampling country, and that they were more diverse than viruses from other host ancestries. We hypothesized that South Asian hosts are more likely to have been infected in South Asia and used the inferred host ancestries to distinguish between the location where the infection was acquired and where the sample was taken. Next, we inferred that three independent transmission events resulted in the spread of the virus from South Asia to the UK, North America, and Oceania. This initial spread happened during or soon after the end of World War II. This was subsequently followed by many independent transmissions between the UK, North America, and Oceania. Using both host and virus genomic information can be highly informative in studying the virus epidemic history, especially in the context of chronic infections where migration histories need to be accounted for.

18.
J Proteome Res ; 20(8): 4212-4215, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34180678

RESUMEN

In the absence of effective treatment, COVID-19 is likely to remain a global disease burden. Compounding this threat is the near certainty that novel coronaviruses with pandemic potential will emerge in years to come. Pan-coronavirus drugs-agents active against both SARS-CoV-2 and other coronaviruses-would address both threats. A strategy to develop such broad-spectrum inhibitors is to pharmacologically target binding sites on SARS-CoV-2 proteins that are highly conserved in other known coronaviruses, the assumption being that any selective pressure to keep a site conserved across past viruses will apply to future ones. Here we systematically mapped druggable binding pockets on the experimental structure of 15 SARS-CoV-2 proteins and analyzed their variation across 27 α- and ß-coronaviruses and across thousands of SARS-CoV-2 samples from COVID-19 patients. We find that the two most conserved druggable sites are a pocket overlapping the RNA binding site of the helicase nsp13 and the catalytic site of the RNA-dependent RNA polymerase nsp12, both components of the viral replication-transcription complex. We present the data on a public web portal (https://www.thesgc.org/SARSCoV2_pocketome/), where users can interactively navigate individual protein structures and view the genetic variability of drug-binding pockets in 3D.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Pandemias , ARN Polimerasa Dependiente del ARN/genética
19.
medRxiv ; 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33948608

RESUMEN

Accurate simulation of complex biological processes is an essential component of developing and validating new technologies and inference approaches. As an effort to help contain the COVID-19 pandemic, large numbers of SARS-CoV-2 genomes have been sequenced from most regions in the world. More than 5.5 million viral sequences are publicly available as of November 2021. Many studies estimate viral genealogies from these sequences, as these can provide valuable information about the spread of the pandemic across time and space. Additionally such data are a rich source of information about molecular evolutionary processes including natural selection, for example allowing the identification of new variants with transmissibility and immunity evasion advantages. To our knowledge, there is no framework that is both efficient and flexible enough to simulate the pandemic to approximate world-scale scenarios and generate viral genealogies of millions of samples. Here, we introduce a new fast simulator VGsim which addresses the problem of simulation genealogies under epidemiological models. The simulation process is split into two phases. During the forward run the algorithm generates a chain of population-level events reflecting the dynamics of the pandemic using an hierarchical version of the Gillespie algorithm. During the backward run a coalescent-like approach generates a tree genealogy of samples conditioning on the population-level events chain generated during the forward run. Our software can model complex population structure, epistasis and immunity escape. The code is freely available at https://github.com/Genomics-HSE/VGsim.

20.
BMC Bioinformatics ; 22(1): 285, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34049487

RESUMEN

BACKGROUND: Many important applications in bioinformatics, including sequence alignment and protein family profiling, employ sequence weighting schemes to mitigate the effects of non-independence of homologous sequences and under- or over-representation of certain taxa in a dataset. These schemes aim to assign high weights to sequences that are 'novel' compared to the others in the same dataset, and low weights to sequences that are over-represented. RESULTS: We formalise this principle by rigorously defining the evolutionary 'novelty' of a sequence within an alignment. This results in new sequence weights that we call 'phylogenetic novelty scores'. These scores have various desirable properties, and we showcase their use by considering, as an example application, the inference of character frequencies at an alignment column-important, for example, in protein family profiling. We give computationally efficient algorithms for calculating our scores and, using simulations, show that they are versatile and can improve the accuracy of character frequency estimation compared to existing sequence weighting schemes. CONCLUSIONS: Our phylogenetic novelty scores can be useful when an evolutionarily meaningful system for adjusting for uneven taxon sampling is desired. They have numerous possible applications, including estimation of evolutionary conservation scores and sequence logos, identification of targets in conservation biology, and improving and measuring sequence alignment accuracy.


Asunto(s)
Algoritmos , Biología Computacional , Filogenia , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...