Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(16): 7958-7964, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38564304

RESUMEN

A current challenge in silicon chemistry is to perform liquid-phase synthesis of silicon nanoparticles, which would permit the use of colloidal synthesis techniques to control size and shape. Herein we show how silicon nanoparticles were synthesized at ambient temperature and pressure in organic solvents through a redox reaction. Specifically, a hexacoordinated silicon complex, bis(N,N'-diisopropylbutylamidinato)dichlorosilane, was reduced by a silicon Zintl phase, sodium silicide (Na4Si4). The resulting silicon nanoparticles were crystalline with sizes tuned from a median particle diameter of 15 nm to 45 nm depending on the solvent. Photoluminescence measurements performed on colloidal suspensions of the 45 nm diameter silicon nanoparticles indicated a blue emission signal, attributed to the partial oxidation of the Si nanocrystals or to the presence of nitrogen impurities.

2.
ACS Nano ; 16(10): 15837-15849, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36066922

RESUMEN

High-entropy-alloy (HEA) nanoparticles are attractive for several applications in catalysis and energy. Great efforts are currently devoted to establish composition-property relationships to improve catalytic activity or selectivity. Equally importantly, developing practical fabrication methods for shaping HEA-based materials into complex architectures is a key requirement for their utilization in catalysis. However, shaping nano-HEAs into hierarchical structures avoiding demixing or collapse remains a great challenge. Herein, we overcome this issue by introducing a simple soft-chemistry route to fabricate ordered macro- and mesoporous materials based on HEA nanoparticles, with high surface area, thermal stability, and catalytic activity toward CO oxidation. The process is based on spray-drying from an aqueous solution containing five different noble metal precursors and polymer latex beads. Upon annealing, the polymer plays a double role: templating and reducing agent enabling formation of HEA nanoparticle-based porous networks at only 350 °C. The formation mechanism and the stability of the macro- and mesoporous materials were investigated by a set of in situ characterization techniques; notably, in situ transmission electron microscopy unveiled that the porous structure is stable up to 800 °C. Importantly, this process is green, scalable, and versatile and could be potentially extended to other classes of HEA materials.

3.
Small ; 18(5): e2104204, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34821023

RESUMEN

Noble metal nanostructured films are of great interest for various applications including electronics, photonics, catalysis, and photocatalysis. Yet, structuring and patterning noble metals, especially those of the platinum group, is challenging by conventional nanofabrication. Herein, an approach based on solution processing to obtain metal-based films (rhodium, ruthenium (Ru) or iridium in the presence of residual organic species) with nanostructuration at the 20 nm-scale is introduced. Compared to existing approaches, the dual functionality of block-copolymers acting both as structuring and as reducing agent under inert atmosphere is exploited. A set of in situ techniques has allowed for the capturing of the carbothermal reduction mechanism occurring at the hybrid organic/inorganic interface. Differently from previous literature, a two-step reduction mechanism is unveiled with the formation of a carbonyl intermediate. From a technological point of view, the materials can be solution-processed on a large scale by dip-coating as polymers and simultaneously structured and reduced into metals without requiring expensive equipment or treatments in reducing atmosphere. Importantly, the metal-based films can be patterned directly by block-copolymer lithography or by soft-nanoimprint lithography on various substrates. As proof-of-concept of application, the authors demonstrate that nanostructured Ru films can be used as efficient catalysts for H2 generation into microfluidic reactors.


Asunto(s)
Nanoestructuras , Polímeros , Catálisis , Metales , Impresión
4.
Adv Mater ; 33(43): e2104450, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34486183

RESUMEN

Due to their high porosity and chemical versatility, metal-organic frameworks (MOFs) exhibit physical properties appealing for photonic-based applications. While several MOF photonic structures have been reported, examples of applications thereof are mainly limited to chemical sensing. Herein, the range of application of photonic MOFs is extended to local thermal and photothermal sensing by integrating them into a new architecture: MOF photonic balls. Micrometric-sized photonic balls are made of monodispersed MOFs colloids that are self-assembled via spray-drying, a low-cost, green, and high-throughput method. The versatility of the process allows tuning the morphology and the composition of photonic balls made of several MOFs and composites with tailored optical properties. X-ray nanotomography and environmental hyperspectral microscopy enable analysis of single objects and their evolution in controlled atmosphere and temperature. Notably, in presence of vapors, the MOF photonic balls act as local, label-free temperature probes. Importantly, compared to other thermal probes, the temperature detection range of these materials can be adjusted "on-demand." As proof of concept, the photonic balls are used to determine local temperature profiles around a concentrated laser beam. More broadly, this work is expected to stimulate new research on the physical properties of photonic MOFs providing new possibilities for device fabrication.

5.
Adv Funct Mater ; 31(26)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38031546

RESUMEN

A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie-resonant core-shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiOxNy) shell of an adjustable thickness. Optical spectroscopies coupled to Mie theory calculations give the first experimental evidence that the relative position and intensity of the magnetic and electric dipole resonances are tuned by changing the core-shell architecture. Specifically, coating a high-index particle with a low-index shell coalesces the dipoles, while maintaining a high scattering efficiency, thus generating broadband forward scattering. This synthetic strategy opens a route toward metamaterial fabrication with unprecedented control over visible light manipulation.

6.
Angew Chem Int Ed Engl ; 57(17): 4478-4498, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144583

RESUMEN

Metamaterials have optical properties that are unprecedented in nature. They have opened new horizons in light manipulation, with the ability to bend, focus, completely reflect, transmit, or absorb an incident wave front. Optically active metamaterials in particular could be used for applications ranging from 3D information storage to photovoltaic cells. Silicon (Si) particles are some of the most promising building blocks for optically active metamaterials, with high scattering efficiency coupled to low light absorption for visible frequencies. However, to date ideal Si building blocks cannot be produced by bulk synthesis techniques. The key is to find a synthetic route to produce Si building blocks between 75-200 nm in diameter of uniform size and shape, that are crystalline, have few impurities, and little to no porosity. This Review provides a theoretical background on Si optical properties for metamaterials, an overview of current synthetic methods and gives direction towards the most promising routes to ideal Si particles for metamaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...