Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 12(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37370312

RESUMEN

Due to the rapid spread of CTX-M type ESBLs, the rate of resistance to third-generation cephalosporin has increased among Gram-negative bacteria, especially in Escherichia coli, and there is a need to find ways to re-sensitize ESBL E. coli to cephalosporin treatment. A previous study showed that genes involved in protein synthesis were significantly up-regulated in the presence of subinhibitory concentration of cefotaxime (CTX) in a CTX-M-1-producing E. coli. In this study, the interaction between CTX and gentamicin (GEN), targeting protein synthesis, was evaluated in MG1655/pTF2, and the MIC of CTX was strongly reduced (128-fold) in the presence of this combnation therapy. Since the underlying mechanism behind this synergy is not known, we constructed a saturated transposon mutant library in MG1655/pTF2::blaCTX-M-1 containing 315,925 unique transposon insertions to measure mutant depletion upon exposure to CTX, GEN, and combination treatment of CTX and GEN by Transposon Directed Insertion-site Sequencing (TraDIS). We identified 57 genes that were depleted (log2FC ≤ -2 and with q.value ≤ 0.01) during exposure to CTX, 18 for GEN, and 31 for combination treatment of CTX and GEN. For validation, we deleted eight genes that were either uniquely identified in combination treatment, overlapped with monotherapy of GEN, or were shared between combination treatment and monotherapy with CTX and GEN. Of these genes, we found that the inactivation of dnaK, mnmA, rsgA, and ybeD increased the efficacy of both CTX and GEN treatment, the inactivation of cpxR and yafN increased the efficacy of only CTX, and the inactivation of mnmA, rsgA, and ybeD resulted in increased synergy between CTX and GEN. Thus, the study points to putative targets for helper drugs that can restore susceptibility to these important drugs, and it indicates that genes involved in protein synthesis are essential for the synergy between these two drugs. In summary, the study identified mutants that sensitize ESBL-producing E. coli to CTX and a combination of CTX and GEN, and it increased our understanding of the mechanism behind synergy between ß-lactam and aminoglycoside drugs. This forms a framework for developing new strategies to combat infections caused by resistant bacteria.

2.
Nat Methods ; 19(7): 881-892, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697835

RESUMEN

Current imaging approaches limit the ability to perform multi-scale characterization of three-dimensional (3D) organotypic cultures (organoids) in large numbers. Here, we present an automated multi-scale 3D imaging platform synergizing high-density organoid cultures with rapid and live 3D single-objective light-sheet imaging. It is composed of disposable microfabricated organoid culture chips, termed JeWells, with embedded optical components and a laser beam-steering unit coupled to a commercial inverted microscope. It permits streamlining organoid culture and high-content 3D imaging on a single user-friendly instrument with minimal manipulations and a throughput of 300 organoids per hour. We demonstrate that the large number of 3D stacks that can be collected via our platform allows training deep learning-based algorithms to quantify morphogenetic organizations of organoids at multi-scales, ranging from the subcellular scale to the whole organoid level. We validated the versatility and robustness of our approach on intestine, hepatic, neuroectoderm organoids and oncospheres.


Asunto(s)
Imagenología Tridimensional , Organoides , Intestinos
3.
Cancer Gene Ther ; 29(10): 1429-1438, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35379907

RESUMEN

Cell migration depends on the dynamic organisation of the actin cytoskeleton and assembly and disassembly of focal adhesions (FAs). However, the precise mechanisms coordinating these processes remain poorly understood. We previously identified the oestrogen-related receptor α (ERRα) as a major regulator of cell migration. Here, we show that loss of ERRα leads to abnormal accumulation of actin filaments that is associated with an increased level of inactive form of the actin-depolymerising factor cofilin. We further show that ERRα depletion decreases cell adhesion and results in defective FA formation and turnover. Interestingly, specific inhibition of the RhoA-ROCK-LIMK-cofilin pathway rescues the actin polymerisation defects resulting from ERRα silencing, but not cell adhesion. Instead, we found that MAP4K4 is a direct target of ERRα and down-regulation of its activity rescues cell adhesion and FA formation in the ERRα-depleted cells. Altogether, our results highlight a crucial role of ERRα in coordinating the dynamic of actin network and FAs through the independent regulation of the RhoA and MAP4K4 pathways.


Asunto(s)
Actinas , Adhesiones Focales , Factores Despolimerizantes de la Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Movimiento Celular/fisiología , Adhesiones Focales/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
4.
Nat Mater ; 19(9): 1026-1035, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32341512

RESUMEN

The symmetry breaking of protein distribution and cytoskeleton organization is an essential aspect for the development of apicobasal polarity. In embryonic cells this process is largely cell autonomous, while differentiated epithelial cells collectively polarize during epithelium formation. Here, we demonstrate that the de novo polarization of mature hepatocytes does not require the synchronized development of apical poles on neighbouring cells. De novo polarization at the single-cell level by mere contact with the extracellular matrix and immobilized cadherin defining a polarizing axis. The creation of these single-cell liver hemi-canaliculi allows unprecedented imaging resolution and control and over the lumenogenesis process. We show that the density and localization of cadherins along the initial cell-cell contact act as key triggers of the reorganization from lateral to apical actin cortex. The minimal cues necessary to trigger the polarization of hepatocytes enable them to develop asymmetric lumens with ectopic epithelial cells originating from the kidney, breast or colon.


Asunto(s)
Biomimética , Hepatocitos/citología , Línea Celular , Polaridad Celular , Humanos
5.
Mol Biol Cell ; 30(2): 181-190, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30462575

RESUMEN

Integrins are transmembrane receptors that have a pivotal role in mechanotransduction processes by connecting the extracellular matrix to the cytoskeleton. Although it is well established that integrin activation/inhibition cycles are due to highly dynamic interactions, whether integrin mobility depends on local tension and cytoskeletal organization remains surprisingly unclear. Using an original approach combining micropatterning on glass substrates to induce standardized local mechanical constraints within a single cell with temporal image correlation spectroscopy, we measured the mechanosensitive response of integrin mobility at the whole cell level and in adhesion sites under different mechanical constraints. Contrary to ß1 integrins, high tension increases ß3 integrin residence time in adhesive regions. Chimeric integrins and structure-function studies revealed that the ability of ß3 integrins to specifically sense local tensional organization is mostly encoded by its cytoplasmic domain and is regulated by tuning the affinity of its NPXY domains through phosphorylation by Src family kinases.


Asunto(s)
Integrina beta1/metabolismo , Integrina beta3/metabolismo , Familia-src Quinasas/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Integrina beta3/química , Mecanotransducción Celular , Ratones , Modelos Biológicos , Fosforilación , Dominios Proteicos , Transporte de Proteínas , Análisis Espectral , Familia-src Quinasas/antagonistas & inhibidores
6.
J Cell Sci ; 131(15)2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30030370

RESUMEN

Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This crosstalk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in cerebral cavernous malformation (CCM) genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease, as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. This study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold, promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 (also known as KRIT1) produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1 and CCM2-depleted endothelial monolayers, and rescues the cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down Rock2 but not Rock1 in wild-type zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM1-CCM2 complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it solely identifies the ROCK1 isoform as a potential therapeutic target for the CCM disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Endoteliales/metabolismo , Proteína KRIT1/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Western Blotting , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Portadoras/genética , Bovinos , Células Endoteliales/citología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunoprecipitación , Proteína KRIT1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra , Quinasas Asociadas a rho/genética
7.
Methods Mol Biol ; 1771: 55-66, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29633204

RESUMEN

We present here a method to create arrays of microcavities that can be differentially coated on their bottom, side, and top with different proteins. These cavities range in size from single cell to multicellular aggregate. We provide detailed protocols to create such arrays with some variations using different materials and different coating proteins. The use of such cavities as bona fide artificial microniches to mimic cellular microenvironments has been already established and is referenced.


Asunto(s)
Análisis por Micromatrices/métodos , Animales , Técnicas de Cultivo de Célula , Línea Celular , Análisis por Micromatrices/instrumentación , Análisis de Matrices Tisulares/instrumentación , Análisis de Matrices Tisulares/métodos
8.
APL Bioeng ; 2(2): 026111, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31069308

RESUMEN

We report an experimental approach to study the mechanosensitivity of cell-cell contact upon mechanical stimulation in suspended cell-doublets. The doublet is placed astride an hourglass aperture, and a hydrodynamic force is selectively exerted on only one of the cells. The geometry of the device concentrates the mechanical shear over the junction area. Together with mechanical shear, the system also allows confocal quantitative live imaging of the recruitment of junction proteins (e.g., E-cadherin, ZO-1, occludin, and actin). We observed the time sequence over which proteins were recruited to the stretched region of the contact. The compressed side of the contact showed no response. We demonstrated how this mechanism polarizes the stress-induced recruitment of junctional components within one single junction. Finally, we demonstrated that stabilizing the actin cortex dynamics abolishes the mechanosensitive response of the junction. Our experimental design provides an original approach to study the role of mechanical force at a cell-cell contact with unprecedented control over stress application and quantitative optical analysis.

9.
Biol Cell ; 109(3): 127-137, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27990663

RESUMEN

BACKGROUND INFORMATION: Integrins are key receptors that allow cells to sense and respond to their mechanical environment. Although they bind the same ligand, ß1 and ß3 integrins have distinct and cooperative roles in mechanotransduction. RESULTS: Using traction force microscopy on unconstrained cells, we show that deleting ß3 causes traction forces to increase, whereas the deletion of ß1 integrin results in a strong decrease of contractile forces. Consistently, loss of ß3 integrin also induces an increase in ß1 integrin activation. Using a genetic approach, we identified the phosphorylation of the distal NPXY domain as an essential process for ß3 integrin to be able to modulate traction forces. Loss of ß3 integrins also impacted cell shape and the spatial distribution of traction forces, by causing forces to be generated closer to the cell edge, and the cell shape. CONCLUSIONS: Our results emphasize the role of ß3 integrin in spatial distribution of cellular forces. We speculate that, by modulating its affinity with kindlin, ß3 integrins may be able to locate near the cell edge where it can control ß1 integrin activation and clustering. SIGNIFICANCE: Tensional homeostasis at the single cell level is performed by the ability of ß3 adhesions to negatively regulate the activation degree and spatial localization of ß1 integrins. By combining genetic approaches and new tools to analyze traction distribution and cell morphology on a population of cells we were able to identify the molecular partners involved in cellular forces regulation.


Asunto(s)
Proteínas Portadoras/genética , Fibroblastos/metabolismo , Integrina alfaVbeta3/genética , Integrina beta1/genética , Integrina beta3/genética , Mecanotransducción Celular , Secuencia de Aminoácidos , Animales , Fenómenos Biomecánicos , Proteínas Portadoras/metabolismo , Adhesión Celular , Línea Celular , Fibroblastos/ultraestructura , Eliminación de Gen , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina beta1/metabolismo , Integrina beta3/metabolismo , Ratones , Fosforilación , Unión Proteica , Dominios Proteicos
10.
Biomater Sci ; 4(11): 1630-1637, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27709128

RESUMEN

Mechanical interactions between cells and their microenvironment are crucial for fundamental biological processes ranging from migration to differentiation. This has led, over the last decades, to the development of new ways to culture cells. Living cells are now grown not only on glass coverslips, where they completely lose the mechanical and geometrical constraints coming from their microenvironment, but also on soft patterned substrates that mimic the rigidity and spatial information of their in vivo niches. Microfabrication processes have thus logically emerged has new tools to create model environments to probe the behavior of biological objects. Here, we present a method for fast and robust protein micropattern transfer onto polyacrylamide hydrogels that can be used for traction force microscopy. The technique relies on the elaboration of glass templates bearing patterned polymer brushes, which can be re-employed several times for the production of patterned gels without the need to repeat the critical microfabrication steps.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hidrogeles/química , Microtecnología
11.
Biophys J ; 110(2): 470-480, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26789769

RESUMEN

The cytoskeleton plays a key role in the ability of cells to both resist mechanical stress and generate force, but the precise involvement of intermediate filaments in these processes remains unclear. We focus here on desmin, a type III intermediate filament, which is specifically expressed in muscle cells and serves as a skeletal muscle differentiation marker. By using several complementary experimental techniques, we have investigated the impact of overexpressing desmin and expressing a mutant desmin on the passive and active mechanical properties of C2C12 myoblasts. We first show that the overexpression of wild-type-desmin increases the overall rigidity of the cells, whereas the expression of a mutated E413K desmin does not. This mutation in the desmin gene is one of those leading to desminopathies, a subgroup of myopathies associated with progressive muscular weakness that are characterized by the presence of desmin aggregates and a disorganization of sarcomeres. We show that the expression of this mutant desmin in C2C12 myoblasts induces desmin network disorganization, desmin aggregate formation, and a small decrease in the number and total length of stress fibers. We finally demonstrate that expression of the E413K mutant desmin also alters the traction forces generation of single myoblasts lacking organized sarcomeres.


Asunto(s)
Desmina/metabolismo , Mutación Missense , Mioblastos/metabolismo , Animales , Línea Celular , Desmina/genética , Ratones , Movimiento (Física) , Estructura Terciaria de Proteína , Fibras de Estrés/genética , Fibras de Estrés/metabolismo , Estrés Mecánico
12.
PLoS One ; 10(3): e0120672, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25781607

RESUMEN

The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17ß-estradiol (E2) addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation.


Asunto(s)
Estradiol/farmacología , Estrógenos/farmacología , Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Benzodioxoles/farmacología , Dermis , Receptor beta de Estrógeno/metabolismo , Femenino , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Quinolinas/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...