Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(3): 438-449, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38347182

RESUMEN

Clathrin-mediated endocytosis is an essential cellular internalization pathway involving the dynamic assembly of clathrin and accessory proteins to form membrane-bound vesicles. The evolutionarily ancient TSET-TPLATE complex (TPC) plays an essential, but ill-defined role in endocytosis in plants. Here we show that two highly disordered TPC subunits, AtEH1 and AtEH2, function as scaffolds to drive biomolecular condensation of the complex. These condensates specifically nucleate on the plasma membrane through interactions with anionic phospholipids, and facilitate the dynamic recruitment and assembly of clathrin, as well as early- and late-stage endocytic accessory proteins. Importantly, condensation promotes ordered clathrin assemblies. TPC-driven biomolecular condensation thereby facilitates dynamic protein assemblies throughout clathrin-mediated endocytosis. Furthermore, we show that a disordered region of AtEH1 controls the material properties of endocytic condensates in vivo. Alteration of these material properties disturbs the recruitment of accessory proteins, influences endocytosis dynamics and impairs plant responsiveness. Our findings reveal how collective interactions shape endocytosis.


Asunto(s)
Clatrina , Endocitosis , Membrana Celular/metabolismo , Clatrina/metabolismo
2.
Curr Opin Plant Biol ; 75: 102429, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37523901

RESUMEN

The plasma membrane (PM) houses a wide variety of proteins, facilitating interactions between the cell and its surroundings. Perception of external stimuli leads to selective internalization of membrane proteins via endocytosis. A multitude of endocytic signals affect protein internalization; however, their coordination and the exact mechanism of their recognition still remain elusive. In this review, we summarized the up-to-date knowledge of different internalization signals in PM cargo proteins and their involvement during protein trafficking.


Asunto(s)
Endocitosis , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Membrana Celular/metabolismo , Plantas/metabolismo
4.
Nat Plants ; 8(12): 1467-1483, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456802

RESUMEN

Endocytosis controls the perception of stimuli by modulating protein abundance at the plasma membrane. In plants, clathrin-mediated endocytosis is the most prominent internalization pathway and relies on two multimeric adaptor complexes, the AP-2 and the TPLATE complex (TPC). Ubiquitination is a well-established modification triggering endocytosis of cargo proteins, but how this modification is recognized to initiate the endocytic event remains elusive. Here we show that TASH3, one of the large subunits of TPC, recognizes ubiquitinated cargo at the plasma membrane via its SH3 domain-containing appendage. TASH3 lacking this evolutionary specific appendage modification allows TPC formation but the plants show severely reduced endocytic densities, which correlates with reduced endocytic flux. Moreover, comparative plasma membrane proteomics identified differential accumulation of multiple ubiquitinated cargo proteins for which we confirm altered trafficking. Our findings position TPC as a key player for ubiquitinated cargo internalization, allowing future identification of target proteins under specific stress conditions.


Asunto(s)
Clatrina , Endocitosis , Clatrina/genética , Clatrina/metabolismo , Membrana Celular/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
5.
Front Plant Sci ; 12: 538580, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815429

RESUMEN

Plant cells perceive and adapt to an ever-changing environment by modifying their plasma membrane (PM) proteome. Whereas secretion deposits new integral membrane proteins, internalization by endocytosis removes membrane proteins and associated ligands, largely with the aid of adaptor protein (AP) complexes and the scaffolding molecule clathrin. Two AP complexes function in clathrin-mediated endocytosis at the PM in plant cells, the heterotetrameric AP-2 complex and the hetero-octameric TPLATE complex (TPC). Whereas single subunit mutants in AP-2 develop into viable plants, genetic mutation of a single TPC subunit causes fully penetrant male sterility and silencing single subunits leads to seedling lethality. To address TPC function in somatic root cells, while minimizing indirect effects on plant growth, we employed nanobody-dependent delocalization of a functional, GFP-tagged TPC subunit, TML, in its respective homozygous genetic mutant background. In order to decrease the amount of functional TPC at the PM, we targeted our nanobody construct to the mitochondria and fused it to TagBFP2 to visualize it independently of its bait. We furthermore limited the effect of our delocalization to those tissues that are easily accessible for live-cell imaging by expressing it from the PIN2 promoter, which is active in root epidermal and cortex cells. With this approach, we successfully delocalized TML from the PM. Moreover, we also show co-recruitment of TML-GFP and AP2A1-TagRFP to the mitochondria, suggesting that our approach delocalized complexes, rather than individual adaptor complex subunits. In line with the specific expression domain, we only observed minor effects on root growth, yet realized a clear reduction of endocytic flux in epidermal root cells. Nanobody-dependent delocalization in plants, here exemplified using a TPC subunit, has the potential to be widely applicable to achieve specific loss-of-function analysis of otherwise lethal mutants.

6.
Plant Cell ; 33(4): 1101-1117, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33793859

RESUMEN

Identifying protein-protein interactions (PPIs) is crucial for understanding biological processes. Many PPI tools are available, yet only some function within the context of a plant cell. Narrowing down even further, only a few tools allow complex multi-protein interactions to be visualized. Here, we present a conditional in vivo PPI tool for plant research that meets these criteria. Knocksideways in plants (KSP) is based on the ability of rapamycin to alter the localization of a bait protein and its interactors via the heterodimerization of FKBP and FRB domains. KSP is inherently free from many limitations of other PPI systems. This in vivo tool does not require spatial proximity of the bait and prey fluorophores and it is compatible with a broad range of fluorophores. KSP is also a conditional tool and therefore the visualization of the proteins in the absence of rapamycin acts as an internal control. We used KSP to confirm previously identified interactions in Nicotiana benthamiana leaf epidermal cells. Furthermore, the scripts that we generated allow the interactions to be quantified at high throughput. Finally, we demonstrate that KSP can easily be used to visualize complex multi-protein interactions. KSP is therefore a versatile tool with unique characteristics and applications that complements other plant PPI methods.


Asunto(s)
Nicotiana/efectos de los fármacos , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas Recombinantes/genética , Sirolimus/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/genética , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...