Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Eng Phys ; 126: 104144, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38621846

RESUMEN

The present study adopts a smartphone-based approach for the experimental characterization of coronary flows. Technically, Particle Tracking Velocimetry (PTV) measurements were performed using a smartphone camera and a low-power continuous wave laser in realistic healthy and stenosed phantoms of left anterior descending artery with inflow Reynolds numbers approximately ranging from 20 to 200. A Lagrangian-Eulerian mapping was performed to convert Lagrangian PTV velocity data to a Eulerian grid. Eulerian velocity and vorticity data obtained from smartphone-based PTV measurements were compared with Particle Image Velocimetry (PIV) measurements performed with a smartphone-based setup and with a conventional setup based on a high-power double-pulsed laser and a CMOS camera. Smartphone-based PTV and PIV velocity flow fields substantially agreed with conventional PIV measurements, with the former characterized by lower average percentage differences than the latter. Discrepancies emerged at high flow regimes, especially at the stenosis throat, due to particle image blur generated by smartphone camera shutter speed and image acquisition frequency. In conclusion, the present findings demonstrate the feasibility of PTV measurements using a smartphone camera and a low-power light source for the in vitro characterization of cardiovascular flows for research, industrial and educational purposes, with advantages in terms of costs, safety and usability.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Teléfono Inteligente , Reología/métodos , Velocidad del Flujo Sanguíneo , Fantasmas de Imagen
2.
Arterioscler Thromb Vasc Biol ; 44(4): 976-986, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328935

RESUMEN

BACKGROUND: Plaque composition and wall shear stress (WSS) magnitude act as well-established players in coronary plaque progression. However, WSS magnitude per se does not completely capture the mechanical stimulus to which the endothelium is subjected, since endothelial cells experience changes in the WSS spatiotemporal configuration on the luminal surface. This study explores WSS profile and lipid content signatures of plaque progression to identify novel biomarkers of coronary atherosclerosis. METHODS: Thirty-seven patients with acute coronary syndrome underwent coronary computed tomography angiography, near-infrared spectroscopy intravascular ultrasound, and optical coherence tomography of at least 1 nonculprit vessel at baseline and 1-year follow-up. Baseline coronary artery geometries were reconstructed from intravascular ultrasound and coronary computed tomography angiography and combined with flow information to perform computational fluid dynamics simulations to assess the time-averaged WSS magnitude (TAWSS) and the variability in the contraction/expansion action exerted by WSS on the endothelium, quantifiable in terms of topological shear variation index (TSVI). Plaque progression was measured as intravascular ultrasound-derived percentage plaque atheroma volume change at 1-year follow-up. Plaque composition information was extracted from near-infrared spectroscopy and optical coherence tomography. RESULTS: Exposure to high TSVI and low TAWSS was associated with higher plaque progression (4.00±0.69% and 3.60±0.62%, respectively). Plaque composition acted synergistically with TSVI or TAWSS, resulting in the highest plaque progression (≥5.90%) at locations where lipid-rich plaque is exposed to high TSVI or low TAWSS. CONCLUSIONS: Luminal exposure to high TSVI, solely or combined with a lipid-rich plaque phenotype, is associated with enhanced plaque progression at 1-year follow-up. Where plaque progression occurred, low TAWSS was also observed. These findings suggest TSVI, in addition to low TAWSS, as a potential biomechanical predictor for plaque progression, showing promise for clinical translation to improve patient prognosis.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Humanos , Vasos Coronarios/diagnóstico por imagen , Células Endoteliales , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Angiografía por Tomografía Computarizada , Lípidos , Estrés Mecánico , Angiografía Coronaria
3.
Comput Methods Programs Biomed ; 242: 107823, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37757568

RESUMEN

BACKGROUND: The combination of medical imaging and computational hemodynamics is a promising technology to diagnose/prognose coronary artery disease (CAD). However, the clinical translation of in silico hemodynamic models is still hampered by assumptions/idealizations that must be introduced in model-based strategies and that necessarily imply uncertainty. This study aims to provide a definite answer to the open question of how to properly model blood rheological properties in computational fluid dynamics (CFD) simulations of coronary hemodynamics. METHODS: The geometry of the right coronary artery (RCA) of 144 hemodynamically stable patients with different stenosis degree were reconstructed from angiography. On them, unsteady-state CFD simulations were carried out. On each reconstructed RCA two different simulation strategies were applied to account for blood rheological properties, implementing (i) a Newtonian (N) and (ii) a shear-thinning non-Newtonian (non-N) rheological model. Their impact was evaluated in terms of wall shear stress (WSS magnitude, multidirectionality, topological skeleton) and helical flow (strength, topology) profiles. Additionally, luminal surface areas (SAs) exposed to shear disturbances were identified and the co-localization of paired N and non-N SAs was quantified in terms of similarity index (SI). RESULTS: The comparison between paired N vs. shear-thinning non-N simulations revealed remarkably similar profiles of WSS-based and helicity-based quantities, independent of the adopted blood rheology model and of the degree of stenosis of the vessel. Statistically, for each paired N and non-N hemodynamic quantity emerged negligible bias from Bland-Altman plots, and strong positive linear correlation (r > 0.94 for almost all the WSS-based quantities, r > 0.99 for helicity-based quantities). Moreover, a remarkable co-localization of N vs. non-N luminal SAs exposed to disturbed shear clearly emerged (SI distribution 0.95 [0.93, 0.97]). Helical flow topology resulted to be unaffected by blood rheological properties. CONCLUSIONS: This study, performed on 288 angio-based CFD simulations on 144 RCA models presenting with different degrees of stenosis, suggests that the assumptions on blood rheology have negligible impact both on WSS and helical flow profiles associated with CAD, thus definitively answering to the question "is Newtonian assumption for blood rheology adequate in coronary hemodynamics simulations?".


Asunto(s)
Enfermedad de la Arteria Coronaria , Vasos Coronarios , Humanos , Vasos Coronarios/diagnóstico por imagen , Constricción Patológica , Hemodinámica , Reología , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Modelos Cardiovasculares , Estrés Mecánico , Velocidad del Flujo Sanguíneo/fisiología , Simulación por Computador
5.
J Biomech ; 154: 111620, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178494

RESUMEN

In the context of aortic hemodynamics, uncertainties affecting blood flow simulations hamper their translational potential as supportive technology in clinics. Computational fluid dynamics (CFD) simulations under rigid-walls assumption are largely adopted, even though the aorta contributes markedly to the systemic compliance and is characterized by a complex motion. To account for personalized wall displacements in aortic hemodynamics simulations, the moving-boundary method (MBM) has been recently proposed as a computationally convenient strategy, although its implementation requires dynamic imaging acquisitions not always available in clinics. In this study we aim to clarify the real need for introducing aortic wall displacements in CFD simulations to accurately capture the large-scale flow structures in the healthy human ascending aorta (AAo). To do that, the impact of wall displacements is analyzed using subject-specific models where two CFD simulations are performed imposing (1) rigid walls, and (2) personalized wall displacements adopting a MBM, integrating dynamic CT imaging and a mesh morphing technique based on radial basis functions. The impact of wall displacements on AAo hemodynamics is analyzed in terms of large-scale flow patterns of physiological significance, namely axial blood flow coherence (quantified applying the Complex Networks theory), secondary flows, helical flow and wall shear stress (WSS). From the comparison with rigid-wall simulations, it emerges that wall displacements have a minor impact on the AAo large-scale axial flow, but they can affect secondary flows and WSS directional changes. Overall, helical flow topology is moderately affected by aortic wall displacements, whereas helicity intensity remains almost unchanged. We conclude that CFD simulations with rigid-wall assumption can be a valid approach to study large-scale aortic flows of physiological significance.


Asunto(s)
Aorta Torácica , Aorta , Humanos , Aorta Torácica/fisiología , Aorta/fisiología , Hemodinámica/fisiología , Estrés Mecánico , Modelos Cardiovasculares , Velocidad del Flujo Sanguíneo/fisiología
6.
Cardiovasc Res ; 119(4): 1021-1029, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36575921

RESUMEN

AIMS: Low wall shear stress (WSS) is acknowledged to play a role in plaque development through its influence on local endothelial function. Also, lipid-rich plaques (LRPs) are associated with endothelial dysfunction. However, little is known about the interplay between WSS and the presence of lipids with respect to plaque progression. Therefore, we aimed to study the differences in WSS-related plaque progression between LRPs, non-LRPs, or plaque-free regions in human coronary arteries. METHODS AND RESULTS: In the present single-centre, prospective study, 40 patients who presented with an acute coronary syndrome successfully underwent near-infrared spectroscopy intravascular ultrasound (NIRS-IVUS) and optical coherence tomography (OCT) of at least one non-culprit vessel at baseline and completed a 1-year follow-up. WSS was computed applying computational fluid dynamics to a three-dimensional reconstruction of the coronary artery based on the fusion of the IVUS-segmented lumen with a CT-derived centreline, using invasive flow measurements as boundary conditions. For data analysis, each artery was divided into 1.5 mm/45° sectors. Plaque growth based on IVUS-derived percentage atheroma volume change was compared between LRPs, non-LRPs, and plaque-free wall segments, as assessed by both OCT and NIRS. Both NIRS- and OCT-detected lipid-rich sectors showed a significantly higher plaque progression than non-LRPs or plaque-free regions. Exposure to low WSS was associated with a higher plaque progression than exposure to mid or high WSS, even in the regions classified as a plaque-free wall. Furthermore, low WSS and the presence of lipids had a synergistic effect on plaque growth, resulting in the highest plaque progression in lipid-rich regions exposed to low shear stress. CONCLUSION: This study demonstrates that NIRS- and OCT-detected lipid-rich regions exposed to low WSS are subject to enhanced plaque growth over a 1-year follow-up. The presence of lipids and low WSS proves to have a synergistic effect on plaque growth.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Humanos , Vasos Coronarios/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Espectroscopía Infrarroja Corta , Tomografía de Coherencia Óptica , Estudios Prospectivos , Lípidos
7.
Comput Methods Programs Biomed ; 226: 107174, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36223707

RESUMEN

BACKGROUND AND OBJECTIVE: Near-wall transport of low-density lipoproteins (LDL) in arteries plays a relevant role in the initiation of atherosclerosis. Although it can be modelled in silico by coupling the Navier-Stokes equations with the 3D advection-diffusion (AD) equation, the associated computational cost is high. As wall shear stress (WSS) represents a first-order approximation of the near-wall velocity in arteries, we aimed at identifying computationally convenient WSS-based quantities to infer LDL near-wall transport based on the underlying near-wall hemodynamics in five models of three human arterial districts (aorta, carotid bifurcations, coronary arteries). The simulated LDL transport and its WSS-based surrogates were qualitatively compared with in vivo longitudinal measurements of wall thickness growth on the coronary artery models. METHODS: Numerical simulations of blood flow coupled with AD equations for LDL transport and blood-wall transfer were performed. The co-localization of the simulated LDL concentration polarization patterns with luminal surface areas characterized by low cycle-average WSS, near-wall flow stagnation and WSS attracting patterns was quantitatively assessed by the similarity index (SI). In detail, the latter two represent features of the WSS topological skeleton, obtained respectively through the Lagrangian tracking of surface-born particles, and the Eulerian analysis of the divergence of the normalized cycle-average WSS vector field. RESULTS: Convergence of the solution of the AD problem required the simulation of 3 (coronary artery) to 10 (aorta) additional cardiac cycles with respect to the Navier-Stokes problem. Co-localization results underlined that WSS topological skeleton features indicating near-wall flow stagnation and WSS attracting patterns identified LDL concentration polarization profiles more effectively than low WSS, as indicated by higher SI values (SI range: 0.17-0.50 for low WSS; 0.24-0.57 for WSS topological skeleton features). Moreover, the correspondence between the simulated LDL uptake and WSS-based quantities profiles with the in vivo measured wall thickness growth in coronary arteries appears promising. CONCLUSIONS: The recently introduced Eulerian approach for identifying WSS attracting patterns from the divergence of normalized WSS provides a computationally affordable template of the LDL polarization at the arterial blood-wall interface without simulating the AD problem. It thus candidates as an effective biomechanical tool for elucidating the mechanistic link amongst LDL transfer at the arterial blood-wall interface, WSS and atherogenesis.


Asunto(s)
Aterosclerosis , Lipoproteínas LDL , Humanos , Modelos Cardiovasculares , Estrés Mecánico , Hemodinámica , Vasos Coronarios
8.
J Biomech Eng ; 144(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35015058

RESUMEN

Despite the important advancements in the stent technology for the treatment of diseased coronary arteries, major complications still affect the postoperative long-term outcome. The stent-induced flow disturbances, and especially the altered wall shear stress (WSS) profile at the strut level, play an important role in the pathophysiological mechanisms leading to stent thrombosis (ST) and in-stent restenosis (ISR). In this context, the analysis of the WSS topological skeleton is gaining more and more interest by extending the current understanding of the association between local hemodynamics and vascular diseases. This study aims to analyze the impact that a deployed coronary stent has on the WSS topological skeleton. Computational fluid dynamics (CFD) simulations were performed in three stented human coronary artery geometries reconstructed from clinical images. The selected cases presented stents with different designs (i.e., two contemporary drug-eluting stents and one bioresorbable scaffold) and included regions with stent malapposition or overlapping. A recently proposed Eulerian-based approach was applied to analyze the WSS topological skeleton features. The results highlighted that the presence of single or multiple stents within a coronary artery markedly impacts the WSS topological skeleton. In particular, repetitive patterns of WSS divergence were observed at the luminal surface, highlighting a WSS contraction action exerted proximal to the stent struts and a WSS expansion action distal to the stent struts. This WSS action pattern was independent from the stent design. In conclusion, these findings could contribute to a deeper understanding of the hemodynamics-driven processes underlying ST and ISR.


Asunto(s)
Vasos Coronarios , Modelos Cardiovasculares , Simulación por Computador , Vasos Coronarios/fisiología , Hemodinámica/fisiología , Humanos , Esqueleto , Stents , Estrés Mecánico
9.
Sci Rep ; 11(1): 22086, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764316

RESUMEN

Wall shear stress (WSS), the frictional force of the blood on the vessel wall, plays a crucial role in atherosclerotic plaque development. Low WSS has been associated with plaque growth, however previous research used different approaches to define low WSS to investigate its effect on plaque progression. In this study, we used four methodologies to allocate low, mid and high WSS in one dataset of human coronary arteries and investigated the predictive power of low WSS for plaque progression. Coronary reconstructions were based on multimodality imaging, using intravascular ultrasound and CT-imaging. Vessel-specific flow was measured using Doppler wire and computational fluid dynamics was performed to calculate WSS. The absolute WSS range varied greatly between the coronary arteries. On the population level, the established pattern of most plaque progression at low WSS was apparent in all methodologies defining the WSS categories. However, for the individual patient, when using measured flow to determine WSS, the absolute WSS values range so widely, that the use of absolute thresholds to determine low WSS was not appropriate to identify regions at high risk for plaque progression.


Asunto(s)
Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/patología , Placa Aterosclerótica/patología , Anciano , Fenómenos Biomecánicos , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estrés Mecánico
10.
Front Bioeng Biotechnol ; 9: 731924, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34409022

RESUMEN

Coronary atherosclerosis is a leading cause of illness and death in Western World and its mechanisms are still non completely understood. Several animal models have been used to 1) study coronary atherosclerosis natural history and 2) propose predictive tools for this disease, that is asymptomatic for a long time, aiming for a direct translation of their findings to human coronary arteries. Among them, swine models are largely used due to the observed anatomical and pathophysiological similarities to humans. However, a direct comparison between swine and human models in terms of coronary hemodynamics, known to influence atherosclerotic onset/development, is still lacking. In this context, we performed a detailed comparative analysis between swine- and human-specific computational hemodynamic models of coronary arteries. The analysis involved several near-wall and intravascular flow descriptors, previously emerged as markers of coronary atherosclerosis initiation/progression, as well as anatomical features. To do that, non-culprit coronary arteries (18 right-RCA, 18 left anterior descending-LAD, 13 left circumflex-LCX coronary artery) from patients presenting with acute coronary syndrome were imaged by intravascular ultrasound and coronary computed tomography angiography. Similarly, the three main coronary arteries of ten adult mini-pigs were also imaged (10 RCA, 10 LAD, 10 LCX). The geometries of the imaged coronary arteries were reconstructed (49 human, 30 swine), and computational fluid dynamic simulations were performed by imposing individualized boundary conditions. Overall, no relevant differences in 1) wall shear stress-based quantities, 2) intravascular hemodynamics (in terms of helical flow features), and 3) anatomical features emerged between human- and swine-specific models. The findings of this study strongly support the use of swine-specific computational models to study and characterize the hemodynamic features linked to coronary atherosclerosis, sustaining the reliability of their translation to human vascular disease.

11.
Ann Biomed Eng ; 49(9): 2606-2621, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34324092

RESUMEN

Although unphysiological wall shear stress (WSS) has become the consensus hemodynamic mechanism for coronary atherosclerosis, the complex biomechanical stimulus affecting atherosclerosis evolution is still undetermined. This has motivated the interest on the contraction/expansion action exerted by WSS on the endothelium, obtained through the WSS topological skeleton analysis. This study tests the ability of this WSS feature, alone or combined with WSS magnitude, to predict coronary wall thickness (WT) longitudinal changes. Nine coronary arteries of hypercholesterolemic minipigs underwent imaging with local WT measurement at three time points: baseline (T1), after 5.6 ± 0.9 (T2), and 7.6 ± 2.5 (T3) months. Individualized computational hemodynamic simulations were performed at T1 and T2. The variability of the WSS contraction/expansion action along the cardiac cycle was quantified using the WSS topological shear variation index (TSVI). Alone or combined, high TSVI and low WSS significantly co-localized with high WT at the same time points and were significant predictors of thickening at later time points. TSVI and WSS magnitude values in a physiological range appeared to play an atheroprotective role. Both the variability of the WSS contraction/expansion action and WSS magnitude, accounting for different hemodynamic effects on the endothelium, (1) are linked to WT changes and (2) concur to identify WSS features leading to coronary atherosclerosis.


Asunto(s)
Aterosclerosis/fisiopatología , Vasos Coronarios/fisiopatología , Modelos Cardiovasculares , Animales , Endotelio Vascular/fisiopatología , Hemodinámica , Estrés Mecánico , Porcinos , Porcinos Enanos
12.
J Cardiovasc Transl Res ; 14(3): 416-425, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33034862

RESUMEN

High wall shear stress (WSS) and near-infrared spectroscopy (NIRS) detected lipid-rich plaque (LRP) are both known to be associated with plaque destabilization and future adverse cardiovascular events. However, knowledge of spatial co-localization of LRP and high WSS is lacking. This study investigated the co-localization of LRP based on NIRS and high WSS. Fifty-three patients presenting acute coronary syndrome underwent NIRS-intravascular-ultrasound (NIRS-IVUS) imaging of a non-culprit coronary artery. WSS was obtained using WSS profiling in 3D-reconstructions of the coronary arteries based on fusion of IVUS-segmented lumen and CT-derived 3D-centerline. Thirty-eight vessels were available for final analysis and divided into 0.5 mm/45° sectors. LRP sectors, as identified by NIRS, were more often colocalized with high WSS than sectors without LRP. Moreover, there was a dose-dependent relationship between lipid content and high WSS exposure. This study is a first step in understanding the evolution of LRPs to vulnerable plaques. Graphical Abstract.


Asunto(s)
Síndrome Coronario Agudo/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Circulación Coronaria , Vasos Coronarios/diagnóstico por imagen , Hemodinámica , Lípidos/análisis , Placa Aterosclerótica , Espectroscopía Infrarroja Corta , Ultrasonografía Intervencional , Síndrome Coronario Agudo/metabolismo , Síndrome Coronario Agudo/fisiopatología , Anciano , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/química , Vasos Coronarios/fisiopatología , Femenino , Humanos , Hidrodinámica , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Modelación Específica para el Paciente , Valor Predictivo de las Pruebas , Estudios Prospectivos , Rotura Espontánea , Estrés Mecánico
13.
Ann Biomed Eng ; 48(12): 2936-2949, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32929560

RESUMEN

Wall Shear Stress (WSS) topological skeleton, composed by fixed points and the manifolds linking them, reflects the presence of blood flow features associated to adverse vascular response. However, the influence of WSS topological skeleton on vascular pathophysiology is still underexplored. This study aimed to identify direct associations between the WSS topological skeleton and markers of vascular disease from real-world clinical longitudinal data of long-term restenosis after carotid endarterectomy (CEA). Personalized computational hemodynamic simulations were performed on a cohort of 13 carotid models pre-CEA and at 1 month after CEA. At 60 months after CEA, intima-media thickness (IMT) was measured to detect long-term restenosis. The analysis of the WSS topological skeleton was carried out by applying a Eulerian method based on the WSS vector field divergence. To provide objective thresholds for WSS topological skeleton quantitative analysis, a computational hemodynamic dataset of 46 ostensibly healthy carotid bifurcation models was considered. CEA interventions did not completely restore physiological WSS topological skeleton features. Significant associations emerged between IMT at 60 months follow-up and the exposure to (1) high temporal variation of WSS contraction/expansion (R2 = 0.51, p < 0.05), and (2) high fixed point residence times, weighted by WSS contraction/expansion strength (R2 = 0.53, p < 0.05). These WSS topological skeleton features were statistically independent from the exposure to low WSS, a previously reported predictor of long-term restenosis, therefore representing different hemodynamic stimuli and potentially impacting differently the vascular response. This study confirms the direct association between WSS topological skeleton and markers of vascular disease, contributing to elucidate the mechanistic link between flow disturbances and clinical observations of vascular lesions.


Asunto(s)
Arterias Carótidas , Reestenosis Coronaria , Endarterectomía Carotidea , Modelos Cardiovasculares , Anciano , Anciano de 80 o más Años , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/fisiopatología , Arterias Carótidas/cirugía , Grosor Intima-Media Carotídeo , Femenino , Hemodinámica , Humanos , Angiografía por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estrés Mecánico
14.
Artículo en Inglés | MEDLINE | ID: mdl-32656199

RESUMEN

The incidence of periprosthetic fractures has rapidly increased in the last two decades and has been the cause of a large number of revision surgeries and permanent physical disability for many patients, as well as a significant socioeconomic burden for many nations. This research deals with a periprosthetic femur fracture real event, occurred following a total hip arthroplasty and treated with one of the most widespread internal fixation methods: the implant of a periprosthetic femur plate system. A Finite Element analysis was performed to investigate the implanted femur plate break after a short follow-up and to understand the plate break causes. Such events are currently object of forensic debate as more and more often hospitals, surgeons, and medical device manufacturers are denounced by patients to whom similar events occur. In this work, different load situations acting on the femur during daily and incidental activities were simulated, in order to validate the correct behavior of the plate, according to the intended use recommended by the manufacturer. The analysis demonstrates that the plate failure can occur in situations of unconventional loading such as that caused by stumbling and in presence of incomplete bone healing.

15.
Med Eng Phys ; 82: 119-129, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32709262

RESUMEN

The degeneration of the arterial wall at the basis of the ascending thoracic aortic aneurysm (ATAA) is a complex multifactorial process, which may lead to clinical complications and, ultimately, death. Individual genetic, biological or hemodynamic factors are inadequate to explain the heterogeneity of ATAA development/progression mechanisms, thus stimulating the analysis of their complex interplay. Here the disruption of the hemodynamic environment in the ATAA is investigated integrating patient-specific computational hemodynamics, CT-based in vivo estimation of local aortic stiffness and advanced fluid mechanics methods of analysis. The final aims are (1) deciphering the ATAA spatiotemporal hemodynamic complexity and its link to near-wall topological features, and (2) identifying the existing links between arterial wall degeneration and hemodynamic insult. Technically, two methodologies are applied to computational hemodynamics data, the wall shear stress (WSS) topological skeleton analysis, and the Complex Networks theory. The same analysis was extended to the healthy aorta. As main findings of the study, we report that: (1) different spatiotemporal heterogeneity characterizes the ATAA and healthy hemodynamics, that markedly reflect on their WSS topological skeleton features; (2) a link (stronger than canonical WSS-based descriptors) emerges between the variation of contraction/expansion action exerted by WSS on the endothelium along the cardiac cycle, and ATAA wall stiffness. The findings of the study suggest the use of advanced methods for a deeper understanding of the hemodynamics disruption in ATAA, and candidate WSS topological skeleton features as promising indicators of local wall degeneration.


Asunto(s)
Aneurisma de la Aorta Torácica , Aorta , Hemodinámica , Humanos , Estrés Mecánico
16.
Med Eng Phys ; 82: 58-69, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32709266

RESUMEN

Patient-specific computational fluid dynamics is a powerful tool for investigating the hemodynamic risk in coronary arteries. Proper setting of flow boundary conditions in computational hemodynamic models of coronary arteries is one of the sources of uncertainty weakening the findings of in silico experiments, in consequence of the challenging task of obtaining in vivo 3D flow measurements within the clinical framework. Accordingly, in this study we evaluated the influence of assumptions on inflow velocity profile shape on coronary artery hemodynamics. To do that, (1) ten left anterior descending coronary artery (LAD) geometries were reconstructed from clinical angiography, and (2) eleven velocity profiles with realistic 3D features such as eccentricity and differently shaped (single- and double-vortex) secondary flows were generated analytically and imposed as inflow boundary conditions. Wall shear stress and helicity-based descriptors obtained prescribing the commonly used parabolic velocity profile were compared with those obtained with the other velocity profiles. Our findings indicated that the imposition of idealized velocity profiles as inflow boundary condition is acceptable as long the results of the proximal vessel segment are not considered, in LAD coronary arteries. As a pragmatic rule of thumb, a conservative estimation of the length of influence of the shape of the inflow velocity profile on LAD local hemodynamics can be given by the theoretical entrance length for cylindrical conduits in laminar flow conditions.


Asunto(s)
Vasos Coronarios , Modelos Cardiovasculares , Velocidad del Flujo Sanguíneo , Simulación por Computador , Vasos Coronarios/diagnóstico por imagen , Hemodinámica , Humanos , Hidrodinámica
17.
Proc Inst Mech Eng H ; 234(11): 1209-1222, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32460666

RESUMEN

Atherosclerosis at the early stage in coronary arteries has been associated with low cycle-average wall shear stress magnitude. However, parallel to the identification of an established active role for low wall shear stress in the onset/progression of the atherosclerotic disease, a weak association between lesions localization and low/oscillatory wall shear stress has been observed. In the attempt to fully identify the wall shear stress phenotype triggering early atherosclerosis in coronary arteries, this exploratory study aims at enriching the characterization of wall shear stress emerging features combining correlation-based analysis and complex networks theory with computational hemodynamics. The final goal is the characterization of the spatiotemporal and topological heterogeneity of wall shear stress waveforms along the cardiac cycle. In detail, here time-histories of wall shear stress magnitude and wall shear stress projection along the main flow direction and orthogonal to it (a measure of wall shear stress multidirectionality) are analyzed in a representative dataset of 10 left anterior descending pig coronary artery computational hemodynamics models. Among the main findings, we report that the proposed analysis quantitatively demonstrates that the model-specific inlet flow-rate shapes wall shear stress time-histories. Moreover, it emerges that a combined effect of low wall shear stress magnitude and of the shape of the wall shear stress-based descriptors time-histories could trigger atherosclerosis at its earliest stage. The findings of this work suggest for new experiments to provide a clearer determination of the wall shear stress phenotype which is at the basis of the so-called arterial hemodynamic risk hypothesis in coronary arteries.


Asunto(s)
Vasos Coronarios , Modelos Cardiovasculares , Animales , Simulación por Computador , Hemodinámica , Humanos , Resistencia al Corte , Estrés Mecánico , Porcinos
18.
Atherosclerosis ; 300: 39-46, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32085872

RESUMEN

BACKGROUND AND AIMS: Atherosclerosis has been associated with near-wall hemodynamics and wall shear stress (WSS). However, the role of coronary intravascular hemodynamics, in particular of the helical flow (HF) patterns that physiologically develop in those arteries, is rarely considered. The purpose of this study was to assess how HF affects coronary plaque initiation and progression, definitively demonstrating its atheroprotective nature. METHODS: The three main coronary arteries of five adult hypercholesterolemic mini-pigs on a high fat diet were imaged by computed coronary tomography angiography (CCTA) and intravascular ultrasound (IVUS) at 3 (T1, baseline) and 9.4 ± 1.9 (T2) months follow-up. The baseline geometries of imaged coronary arteries (n = 15) were reconstructed, and combined with pig-specific boundary conditions (based on in vivo Doppler blood flow measurements) to perform computational fluid dynamic simulations. Local wall thickness (WT) was measured on IVUS images at T1 and T2, and its temporal changes were assessed. Descriptors of HF and WSS nature were computed for each model, and statistically compared to WT data. RESULTS: HF intensity was strongly positively associated with WSS magnitude (p < 0.001). Overall, coronary segments exposed to high baseline levels of HF intensity exhibited a significantly lower WT growth (p < 0.05), compared to regions with either mid or low HF intensity. CONCLUSIONS: This study confirms the physiological significance of HF in coronary arteries, revealing its protective role against atherosclerotic WT growth and its potential in predicting regions undergoing WT development. These findings support future in vivo measurement of coronary HF as atherosclerotic risk marker, overcoming current limitations of in vivo WSS assessment.


Asunto(s)
Enfermedad de la Arteria Coronaria/fisiopatología , Circulación Coronaria , Vasos Coronarios/fisiopatología , Hemorreología , Placa Aterosclerótica , Animales , Velocidad del Flujo Sanguíneo , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/etiología , Vasos Coronarios/diagnóstico por imagen , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hipercolesterolemia/complicaciones , Masculino , Estrés Mecánico , Porcinos , Porcinos Enanos , Ultrasonografía Intervencional
19.
J Biomech ; 100: 109591, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31902610

RESUMEN

Although arterio-venous grafts (AVGs) represent the second choice as permanent vascular access for hemodialysis, this solution is still affected by a relevant failure rate due to graft thrombosis, and development of neointimal hyperplasia (IH) at the distal vein. As a key role in these processes has been attributed to the abnormal hemodynamics establishing in the distal vein, the optimization of AVGs design aimed at minimizing flow disturbances would reduce AVG hemodynamic-related risks. In this study we used computational fluid dynamics to investigate the impact of alternative AVG designs on the reduction of IH and thrombosis risk at the distal venous anastomosis. The performance of the newly designed AVGs was compared to that of commercially available devices. In detail, a total of eight AVG models in closed-loop configuration were constructed: two models resemble the commercially available straight conventional and helical-shaped AVGs; six models are characterized by the insertion of a flow divider (FD), straight or helical shaped, differently positioned inside the graft. Unfavorable hemodynamic conditions were analyzed by assessing the exposure to disturbed shear at the distal vein. Bulk flow was investigated in terms of helical blood flow features, potential thrombosis risk, and pressure drop over the graft. Findings from this study clearly show that using a helically-shaped FD located at the venous side of the graft could induce beneficial helical flow patterns that, minimizing flow disturbances, reduce the IH-related risk of failure at the distal vein, with a clinically irrelevant increase in thrombosis risk and pressure drop over the graft.


Asunto(s)
Prótesis Vascular , Diseño de Prótesis , Diálisis Renal , Venas/fisiopatología , Arterias/fisiopatología , Derivación Arteriovenosa Quirúrgica/efectos adversos , Derivación Arteriovenosa Quirúrgica/instrumentación , Prótesis Vascular/efectos adversos , Hemodinámica/fisiología , Humanos , Masculino
20.
Cardiovasc Res ; 116(6): 1136-1146, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504238

RESUMEN

AIMS: Atherosclerotic plaque development has been associated with wall shear stress (WSS). However, the multidirectionality of blood flow, and thus of WSS, is rarely taken into account. The purpose of this study was to comprehensively compare five metrics that describe (multidirectional) WSS behaviour and assess how WSS multidirectionality affects coronary plaque initiation and progression. METHODS AND RESULTS: Adult familial hypercholesterolaemic pigs (n = 10) that were fed a high-fat diet, underwent imaging of the three main coronary arteries at three-time points [3 (T1), 9 (T2), and 10-12 (T3) months]. Three-dimensional geometry of the arterial lumen, in combination with local flow velocity measurements, was used to calculate WSS at T1 and T2. For analysis, arteries were divided into 3 mm/45° sectors (n = 3648). Changes in wall thickness and final plaque composition were assessed with near-infrared spectroscopy-intravascular ultrasound, optical coherence tomography imaging, and histology. Both in pigs with advanced and mild disease, the highest plaque progression rate was exclusively found at low time-averaged WSS (TAWSS) or high multidirectional WSS regions at both T1 and T2. However, the eventually largest plaque growth was located in regions with initial low TAWSS or high multidirectional WSS that, over time, became exposed to high TAWSS or low multidirectional WSS at T2. Besides plaque size, also the presence of vulnerable plaque components at the last time point was related to low and multidirectional WSS. Almost all WSS metrics had good predictive values for the development of plaque (47-50%) and advanced fibrous cap atheroma (FCA) development (59-61%). CONCLUSION: This study demonstrates that low and multidirectional WSS promote both initiation and progression of coronary atherosclerotic plaques. The high-predictive values of the multidirectional WSS metrics for FCA development indicate their potential as an additional clinical marker for the vulnerable disease.


Asunto(s)
Enfermedad de la Arteria Coronaria/fisiopatología , Circulación Coronaria , Vasos Coronarios/fisiopatología , Modelos Cardiovasculares , Placa Aterosclerótica , Animales , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipercolesterolemia/complicaciones , Masculino , Estrés Mecánico , Sus scrofa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...