Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 220(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37347461

RESUMEN

Healthy adipose tissue (AT) contains ST2+ Tregs, ILC2s, and alternatively activated macrophages that are lost in mice or humans on high caloric diet. Understanding how this form of type 2 immunity is regulated could improve treatment of obesity. The STE20 kinase Thousand And One amino acid Kinase-3 (TAOK3) has been linked to obesity in mice and humans, but its precise function is unknown. We found that ST2+ Tregs are upregulated in visceral epididymal white AT (eWAT) of Taok3-/- mice, dependent on IL-33 and the kinase activity of TAOK3. Upon high fat diet feeding, metabolic dysfunction was attenuated in Taok3-/- mice. ST2+ Tregs disappeared from eWAT in obese wild-type mice, but this was not the case in Taok3-/- mice. Mechanistically, AT Taok3-/- Tregs were intrinsically more responsive to IL-33, through higher expression of ST2, and expressed more PPARγ and type 2 cytokines. Thus, TAOK3 inhibits adipose tissue Tregs and regulates immunometabolism under excessive caloric intake.


Asunto(s)
Inmunidad Innata , Interleucina-33 , Animales , Humanos , Ratones , Dieta Alta en Grasa/efectos adversos , Proteína 1 Similar al Receptor de Interleucina-1 , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo
2.
Mol Cancer Res ; 20(10): 1532-1547, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35749080

RESUMEN

High-grade serous ovarian cancer (HGSOC) is responsible for the largest number of ovarian cancer deaths. The frequent therapy-resistant relapses necessitate a better understanding of mechanisms driving therapy resistance. Therefore, we mapped more than a hundred thousand cells of HGSOC patients in different phases of the disease, using single-cell RNA sequencing. Within patients, we compared chemonaive with chemotreated samples. As such, we were able to create a single-cell atlas of different HGSOC lesions and their treatment. This revealed a high intrapatient concordance between spatially distinct metastases. In addition, we found remarkable baseline differences in transcriptomics of ascitic and solid cancer cells, resulting in a different response to chemotherapy. Moreover, we discovered different robust subtypes of cancer-associated fibroblasts (CAF) in all patients. Besides inflammatory CAFs, vascular CAFs, and matrix CAFs, we identified a new CAF subtype that was characterized by high expression of STAR, TSPAN8, and ALDH1A1 and clearly enriched after chemotherapy. Together, tumor heterogeneity in both cancer and stromal cells contributes to therapy resistance in HGSOC and could form the basis of novel therapeutic strategies that differentiate between ascitic and solid disease. IMPLICATIONS: The newly characterized differences between ascitic and solid cancer cells before and after chemotherapy could inform novel treatment strategies for metastatic HGSOC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Cistadenocarcinoma Seroso , Neoplasias Ováricas , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Femenino , Humanos , Recurrencia Local de Neoplasia , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Tetraspaninas
3.
J Allergy Clin Immunol ; 149(4): 1413-1427.e2, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34506849

RESUMEN

BACKGROUND: The most common endotype of asthma is type 2-high asthma, which is sometimes driven by adaptive allergen-specific TH2 lymphocytes that react to allergens presented by dendritic cells (DCs), or sometimes by an innate immune response dominated by type 2 innate lymphocytes (ILC2s). Understanding the underlying pathophysiology of asthma is essential to improve patient-tailored therapy. The STE20 kinase thousand-and-one kinase 3 (TAOK3) controls key features in the biology of DCs and lymphocytes, but to our knowledge, its potential usefulness as a target for asthma therapy has not yet been addressed. OBJECTIVE: We examined if and how loss of Taok3 affects the development of house dust mite (HDM)-driven allergic asthma in an in vivo mouse model. METHODS: Wild-type Taok3+/+ and gene-deficient Taok3-/- mice were sensitized and challenged with HDM, and bronchoalveolar lavage fluid composition, mediastinal lymph node cytokine production, lung histology, and bronchial hyperreactivity measured. Conditional Taok3fl/fl mice were crossed to tissue- and cell-specific specific deletor Cre mice to understand how Taok3 acted on asthma susceptibility. Kinase-dead (KD) Taok3KD mice were generated to probe for the druggability of this pathway. Activation of HDM-specific T cells was measured in adoptively transferred HDM-specific T-cell receptor-transgenic CD4+ T cells. ILC2 biology was assessed by in vivo and in vitro IL-33 stimulation assays in Taok3-/- and Taok3+/+, Taok3KD, and Red5-Cre Taok3fl/fl mice. RESULTS: Taok3-/- mice failed to mount salient features of asthma, including airway eosinophilia, TH2 cytokine production, IgE secretion, airway goblet cell metaplasia, and bronchial hyperreactivity compared to controls. This was due to intrinsic loss of Taok3 in hematopoietic and not epithelial cells. Loss of Taok3 resulted in hampered HDM-induced lung DC migration to the draining lymph nodes and defective priming of HDM-specific TH2 cells. Strikingly, HDM and IL-33-induced ILC2 proliferation and function were also severely affected in Taok3-deficient and Taok3KD mice. CONCLUSIONS: Absence of Taok3 or loss of its kinase activity protects from HDM-driven allergic asthma as a result of defects in both adaptive DC-mediated TH2 activation and innate ILC2 function. This identifies Taok3 as an interesting drug target, justifying further testing as a new treatment for type 2-high asthma.


Asunto(s)
Asma , Hiperreactividad Bronquial , Alérgenos , Animales , Hiperreactividad Bronquial/patología , Citocinas , Dermatophagoides pteronyssinus , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Interleucina-33 , Pulmón , Linfocitos , Ratones , Proteínas Serina-Treonina Quinasas , Pyroglyphidae , Células Th2
4.
J Exp Med ; 219(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34914824

RESUMEN

In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRß repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.


Asunto(s)
COVID-19/complicaciones , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Interferón gamma/metabolismo , Células Asesinas Naturales/inmunología , Monocitos/metabolismo , Receptores de IgG/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Linfocitos T/inmunología , Adolescente , Células Epiteliales Alveolares/patología , Linfocitos B/inmunología , Vasos Sanguíneos/patología , COVID-19/inmunología , COVID-19/patología , Proliferación Celular , Niño , Estudios de Cohortes , Activación de Complemento , Citocinas/metabolismo , Enterocitos/patología , Femenino , Humanos , Inmunidad Humoral , Inflamación/patología , Interferón Tipo I/metabolismo , Interleucina-15/metabolismo , Activación de Linfocitos/inmunología , Masculino , Receptores de Antígenos de Linfocitos T/metabolismo , SARS-CoV-2/inmunología , Superantígenos/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/patología
5.
Immunity ; 53(3): 641-657.e14, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888418

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs), are suggested to play important roles in the pathogenesis of MAFLD through their activation, although the exact roles played by these cells remain unclear. Here, we demonstrated that KCs were reduced in MAFLD being replaced by macrophages originating from the bone marrow. Recruited macrophages existed in two subsets with distinct activation states, either closely resembling homeostatic KCs or lipid-associated macrophages (LAMs) from obese adipose tissue. Hepatic LAMs expressed Osteopontin, a biomarker for patients with NASH, linked with the development of fibrosis. Fitting with this, LAMs were found in regions of the liver with reduced numbers of KCs, characterized by increased Desmin expression. Together, our data highlight considerable heterogeneity within the macrophage pool and suggest a need for more specific macrophage targeting strategies in MAFLD.


Asunto(s)
Células de la Médula Ósea/citología , Activación de Macrófagos/inmunología , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Osteopontina/metabolismo , Animales , Biomarcadores/metabolismo , Células Cultivadas , Desmina/metabolismo , Femenino , Macrófagos del Hígado/citología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteoma/metabolismo , Transcriptoma/genética
6.
Immunity ; 52(6): 1039-1056.e9, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32392463

RESUMEN

The phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1s and cDC2s, respectively) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen-presenting cells (APCs). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of the Fc receptor CD64 shared with MCs and of IRF8 shared with cDC1s. These inflammatory cDC2s (inf-cDC2s) were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2s matured in response to cell-intrinsic Toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module, and acquired antigens via convalescent serum and Fc receptors. Because hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs.


Asunto(s)
Plasticidad de la Célula/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inmunidad , Macrófagos/inmunología , Macrófagos/metabolismo , Infecciones por Respirovirus/etiología , Presentación de Antígeno , Biomarcadores , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Inmunofenotipificación , Interferón Tipo I/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Especificidad de Órganos/inmunología , Receptores Fc/metabolismo , Infecciones por Respirovirus/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Factores de Transcripción , Virosis/genética , Virosis/inmunología , Virosis/metabolismo , Virosis/virología
7.
Nat Neurosci ; 23(5): 676-689, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284604

RESUMEN

While CNS microglia have been extensively studied, relatively little is known about macrophages populating the peripheral nervous system. Here we performed ontogenic, transcriptomic and spatial characterization of sciatic nerve macrophages (snMacs). Using multiple fate-mapping systems, we show that snMacs do not derive from the early embryonic precursors colonizing the CNS, but originate primarily from late embryonic precursors and become replaced by bone-marrow-derived macrophages over time. Using single-cell transcriptomics, we identified a tissue-specific core signature of snMacs and two spatially separated snMacs: Relmα+Mgl1+ snMacs in the epineurium and Relmα-Mgl1- snMacs in the endoneurium. Globally, snMacs lack most of the core signature genes of microglia, with only the endoneurial subset expressing a restricted number of these genes. In response to nerve injury, the two resident snMac populations respond differently. Moreover, and unlike in the CNS, monocyte-derived macrophages that develop during injury can engraft efficiently in the pool of resident peripheral nervous system macrophages.


Asunto(s)
Macrófagos/citología , Macrófagos/fisiología , Nervio Ciático/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Transcriptoma
8.
Front Immunol ; 11: 606805, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519816

RESUMEN

The Adjuvant System AS01 contains monophosphoryl lipid A (MPL) and the saponin QS-21 in a liposomal formulation. AS01 is included in recently developed vaccines against malaria and varicella zoster virus. Like for many other adjuvants, induction of adaptive immunity by AS01 is highly dependent on the ability to recruit and activate dendritic cells (DCs) that migrate to the draining lymph node for T and B cell stimulation. The objective of this study was to more precisely address the contribution of the different conventional (cDC) and monocyte-derived DC (MC) subsets in the orchestration of the adaptive immune response after immunization with AS01 adjuvanted vaccine. The combination of MPL and QS-21 in AS01 induced strong recruitment of CD26+XCR1+ cDC1s, CD26+CD172+ cDC2s and a recently defined CCR2-dependent CD64-expressing inflammatory cDC2 (inf-cDC2) subset to the draining lymph node compared to antigen alone, while CD26-CD64+CD88+ MCs were barely detectable. At 24 h post-vaccination, cDC2s and inf-cDC2s were superior amongst the different subsets in priming antigen-specific CD4+ T cells, while simultaneously presenting antigen to CD8+ T cells. Diphtheria toxin (DT) mediated depletion of all DCs prior to vaccination completely abolished adaptive immune responses, while depletion 24 h after vaccination mainly affected CD8+ T cell responses. Vaccinated mice lacking Flt3 or the chemokine receptor CCR2 showed a marked deficit in inf-cDC2 recruitment and failed to raise proper antibody and T cell responses. Thus, the adjuvant activity of AS01 is associated with the potent activation of subsets of cDC2s, including the newly described inf-cDC2s.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Adyuvantes Inmunológicos/farmacología , Células Dendríticas/efectos de los fármacos , Vacuna contra el Herpes Zóster/farmacología , Lípido A/análogos & derivados , Receptores CCR2/metabolismo , Saponinas/farmacología , Proteínas del Envoltorio Viral/farmacología , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Inmunización , Lípido A/farmacología , Liposomas , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/farmacología , Receptores CCR2/genética , Transducción de Señal , Tirosina Quinasa 3 Similar a fms/genética
9.
Immunity ; 51(4): 638-654.e9, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31561945

RESUMEN

Macrophages are strongly adapted to their tissue of residence. Yet, little is known about the cell-cell interactions that imprint the tissue-specific identities of macrophages in their respective niches. Using conditional depletion of liver Kupffer cells, we traced the developmental stages of monocytes differentiating into Kupffer cells and mapped the cellular interactions imprinting the Kupffer cell identity. Kupffer cell loss induced tumor necrosis factor (TNF)- and interleukin-1 (IL-1) receptor-dependent activation of stellate cells and endothelial cells, resulting in the transient production of chemokines and adhesion molecules orchestrating monocyte engraftment. Engrafted circulating monocytes transmigrated into the perisinusoidal space and acquired the liver-associated transcription factors inhibitor of DNA 3 (ID3) and liver X receptor-α (LXR-α). Coordinated interactions with hepatocytes induced ID3 expression, whereas endothelial cells and stellate cells induced LXR-α via a synergistic NOTCH-BMP pathway. This study shows that the Kupffer cell niche is composed of stellate cells, hepatocytes, and endothelial cells that together imprint the liver-specific macrophage identity.


Asunto(s)
Células Endoteliales/fisiología , Células Estrelladas Hepáticas/fisiología , Hepatocitos/fisiología , Macrófagos del Hígado/fisiología , Hígado/citología , Macrófagos/fisiología , Monocitos/fisiología , Animales , Comunicación Celular , Diferenciación Celular , Células Cultivadas , Microambiente Celular , Femenino , Regulación de la Expresión Génica , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Notch/metabolismo
10.
J Exp Med ; 216(9): 2010-2023, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31296735

RESUMEN

The ubiquitin-editing enzyme A20 is a well-known regulator of immune cell function and homeostasis. In addition, A20 protects cells from death in an ill-defined manner. While most studies focus on its role in the TNF-receptor complex, we here identify a novel component in the A20-mediated decision between life and death. Loss of A20 in NK cells led to spontaneous NK cell death and severe NK cell lymphopenia. The few remaining NK cells showed an immature, hyperactivated phenotype, hallmarked by the basal release of cytokines and cytotoxic molecules. NK-A20-/- cells were hypersensitive to TNF-induced cell death and could be rescued, at least partially, by a combined deficiency with TNF. Unexpectedly, rapamycin, a well-established inhibitor of mTOR, also strongly protected NK-A20-/- cells from death, and further studies revealed that A20 restricts mTOR activation in NK cells. This study therefore maps A20 as a crucial regulator of mTOR signaling and underscores the need for a tightly balanced mTOR pathway in NK cell homeostasis.


Asunto(s)
Homeostasis , Células Asesinas Naturales/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Supervivencia Celular , Linfopenia/metabolismo , Linfopenia/patología , Ratones , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/deficiencia
11.
Nat Neurosci ; 22(6): 1021-1035, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061494

RESUMEN

While the roles of parenchymal microglia in brain homeostasis and disease are fairly clear, other brain-resident myeloid cells remain less well understood. By dissecting border regions and combining single-cell RNA-sequencing with high-dimensional cytometry, bulk RNA-sequencing, fate-mapping and microscopy, we reveal the diversity of non-parenchymal brain macrophages. Border-associated macrophages (BAMs) residing in the dura mater, subdural meninges and choroid plexus consisted of distinct subsets with tissue-specific transcriptional signatures, and their cellular composition changed during postnatal development. BAMs exhibited a mixed ontogeny, and subsets displayed distinct self-renewal capacity following depletion and repopulation. Single-cell and fate-mapping analysis both suggested that there is a unique microglial subset residing on the apical surface of the choroid plexus epithelium. Finally, gene network analysis and conditional deletion revealed IRF8 as a master regulator that drives the maturation and diversity of brain macrophages. Our results provide a framework for understanding host-macrophage interactions in both the healthy and diseased brain.


Asunto(s)
Encéfalo/citología , Factores Reguladores del Interferón/metabolismo , Macrófagos/citología , Macrófagos/fisiología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/citología
12.
Immunity ; 49(2): 312-325.e5, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30076102

RESUMEN

Heterogeneity between different macrophage populations has become a defining feature of this lineage. However, the conserved factors defining macrophages remain largely unknown. The transcription factor ZEB2 is best described for its role in epithelial to mesenchymal transition; however, its role within the immune system is only now being elucidated. We show here that Zeb2 expression is a conserved feature of macrophages. Using Clec4f-cre, Itgax-cre, and Fcgr1-cre mice to target five different macrophage populations, we found that loss of ZEB2 resulted in macrophage disappearance from the tissues, coupled with their subsequent replenishment from bone-marrow precursors in open niches. Mechanistically, we found that ZEB2 functioned to maintain the tissue-specific identities of macrophages. In Kupffer cells, ZEB2 achieved this by regulating expression of the transcription factor LXRα, removal of which recapitulated the loss of Kupffer cell identity and disappearance. Thus, ZEB2 expression is required in macrophages to preserve their tissue-specific identities.


Asunto(s)
Macrófagos del Hígado/citología , Receptores X del Hígado/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Animales , Linaje de la Célula/inmunología , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Macrófagos del Hígado/inmunología , Hígado/citología , Receptores X del Hígado/metabolismo , Pulmón/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
EMBO Mol Med ; 10(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29444897

RESUMEN

House dust mite (HDM)-allergic asthma is driven by T helper 2 (Th2) lymphocytes, but also innate immune cells control key aspects of the disease. The precise function of innate natural killer (NK) cells during the initiation and propagation of asthma has been very confusing, in part because different, not entirely specific, strategies were used to target these cells. We show that HDM inhalation rapidly led to the accumulation of NK cells in the lung-draining lymph nodes and of activated CD69+ NK cells in the bronchoalveolar lumen. However, genetically engineered Ncr1-DTA or Ncr1-DTR mice that constitutively or temporarily lack NK cells, still developed all key features of acute or chronic HDM-driven asthma, such as bronchial hyperreactivity, Th2 cytokine production, eosinophilia, mucus overproduction, and Th2-dependent immunoglobulin serum titers. The same results were obtained by administration of conventional NK1.1 or asialo-GM1 NK cell-depleting antibodies, antibody-mediated blocking of the NKG2D receptor, or genetic NKG2D deficiency. Thus, although NK cells accumulate in allergen-challenged lungs, our findings comprehensively demonstrate that these cells are not required for HDM-driven asthma in the mouse.


Asunto(s)
Antígenos Ly/metabolismo , Asma/metabolismo , Células Asesinas Naturales/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Pyroglyphidae/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo
14.
Cell Rep ; 18(12): 3005-3017, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28329691

RESUMEN

Peripheral tolerance is crucial for avoiding activation of self-reactive T cells to tissue-restricted antigens. Sterile tissue injury can break peripheral tolerance, but it is unclear how autoreactive T cells get activated in response to self. An example of a sterile injury is myocardial infarction (MI). We hypothesized that tissue necrosis is an activator of dendritic cells (DCs), which control tolerance to self-antigens. DC subsets of a murine healthy heart consisted of IRF8-dependent conventional (c)DC1, IRF4-dependent cDC2, and monocyte-derived DCs. In steady state, cardiac self-antigen α-myosin was presented in the heart-draining mediastinal lymph node (mLN) by cDC1s, driving the proliferation of antigen-specific CD4+ TCR-M T cells and their differentiation into regulatory cells (Tregs). Following MI, all DC subsets infiltrated the heart, whereas only cDCs migrated to the mLN. Here, cDC2s induced TCR-M proliferation and differentiation into interleukin-(IL)-17/interferon-(IFN)γ-producing effector cells. Thus, cardiac-specific autoreactive T cells get activated by mature DCs following myocardial infarction.


Asunto(s)
Células Dendríticas/inmunología , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Linfocitos T/inmunología , Animales , Antígeno CD11c/metabolismo , Linfocitos T CD4-Positivos/inmunología , Movimiento Celular , Factores Reguladores del Interferón/metabolismo , Ganglios Linfáticos/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Monocitos/patología , Miocardio/patología , Miosinas/metabolismo , Fenotipo , Factores de Transcripción/metabolismo
15.
Oncoimmunology ; 6(1): e1253655, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197369

RESUMEN

Targeting immunomodulatory pathways has ushered a new era in lung cancer therapy. Further progress requires deeper insights into the biology of immune cells in the lung cancer micro-environment. Dendritic cells (DCs) represent a heterogeneous and highly plastic immune cell system with a central role in controlling immune responses. The intratumoral infiltration and activation status of DCs are emerging as clinically relevant parameters in lung cancer. In this study, we used an orthotopic preclinical model of lung cancer to dissect how the lung tumor micro-environment affects tissue-resident DCs and extract novel biologically and clinically relevant information. Lung tumor-infiltrating leukocytes expressing generic DC markers were found to predominantly consist of CD11b+ cells that, compare with peritumoral lung DC counterparts, strongly overexpress the T-cell inhibitory molecule PD-L1 and acquire classical surface markers of tumor-associated macrophages (TAMs). Transcriptome analysis of these CD11b+ tumor-infiltrating DCs (TIDCs) indicates impaired antitumoral immunogenicity, confirms the skewing toward TAM-related features, and indicates exposure to a hypoxic environment. In parallel, TIDCs display a specific microRNA (miRNA) signature dominated by the prototypical lung cancer oncomir miR-31. In vitro, hypoxia drives intrinsic miR-31 expression in CD11b+ DCs. Conditioned medium of miR-31 overexpressing CD11b+ DCs induces pro-invasive lung cancer cell shape changes and is enriched with pro-metastatic soluble factors. Finally, analysis of TCGA datasets reveals that the TIDC-associated miRNA signature has a negative prognostic impact in non-small cell lung cancer. Together, these data suggest a novel mechanism through which the lung cancer micro-environment exploits the plasticity of the DC system to support tumoral progression.

16.
Immunity ; 45(3): 626-640, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27637148

RESUMEN

Interferon regulatory factor-8 (IRF8) has been proposed to be essential for development of monocytes, plasmacytoid dendritic cells (pDCs) and type 1 conventional dendritic cells (cDC1s) and remains highly expressed in differentiated DCs. Transcription factors that are required to maintain the identity of terminally differentiated cells are designated "terminal selectors." Using BM chimeras, conditional Irf8(fl/fl) mice and various promotors to target Cre recombinase to different stages of monocyte and DC development, we have identified IRF8 as a terminal selector of the cDC1 lineage controlling survival. In monocytes, IRF8 was necessary during early but not late development. Complete or late deletion of IRF8 had no effect on pDC development or survival but altered their phenotype and gene-expression profile leading to increased T cell stimulatory function but decreased type 1 interferon production. Thus, IRF8 differentially controls the survival and function of terminally differentiated monocytes, cDC1s, and pDCs.


Asunto(s)
Diferenciación Celular/fisiología , Células Dendríticas/metabolismo , Células Dendríticas/fisiología , Factores Reguladores del Interferón/metabolismo , Factores de Transcripción/metabolismo , Animales , Interferón Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Monocitos/fisiología , Regiones Promotoras Genéticas/fisiología , Linfocitos T/metabolismo , Linfocitos T/fisiología
17.
Immunity ; 45(3): 669-684, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27637149

RESUMEN

Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.


Asunto(s)
Células Dendríticas/fisiología , Animales , Diferenciación Celular/fisiología , Citometría de Flujo , Humanos , Inflamación/patología , Macaca , Ratones , Ratones Endogámicos C57BL
18.
Immunity ; 44(4): 755-68, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-26992565

RESUMEN

Tissue-resident macrophages can derive from yolk sac macrophages (YS-Macs), fetal liver monocytes (FL-MOs), or adult bone-marrow monocytes (BM-MOs). The relative capacity of these precursors to colonize a niche, self-maintain, and perform tissue-specific functions is unknown. We simultaneously transferred traceable YS-Macs, FL-MOs, and BM-MOs into the empty alveolar macrophage (AM) niche of neonatal Csf2rb(-/-) mice. All subsets produced AMs, but in competition preferential outgrowth of FL-MOs was observed, correlating with their superior granulocyte macrophage-colony stimulating factor (GM-CSF) reactivity and proliferation capacity. When transferred separately, however, all precursors efficiently colonized the alveolar niche and generated AMs that were transcriptionally almost identical, self-maintained, and durably prevented alveolar proteinosis. Mature liver, peritoneal, or colon macrophages could not efficiently colonize the empty AM niche, whereas mature AMs could. Thus, precursor origin does not affect the development of functional self-maintaining tissue-resident macrophages and the plasticity of the mononuclear phagocyte system is largest at the precursor stage.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Hígado/citología , Macrófagos Alveolares/citología , Saco Vitelino/citología , Animales , Proliferación Celular , Subunidad beta Común de los Receptores de Citocinas/genética , Hígado/embriología , Hígado/inmunología , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transcriptoma/inmunología , Saco Vitelino/inmunología
19.
Nat Commun ; 7: 10321, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26813785

RESUMEN

Self-renewing tissue-resident macrophages are thought to be exclusively derived from embryonic progenitors. However, whether circulating monocytes can also give rise to such macrophages has not been formally investigated. Here we use a new model of diphtheria toxin-mediated depletion of liver-resident Kupffer cells to generate niche availability and show that circulating monocytes engraft in the liver, gradually adopt the transcriptional profile of their depleted counterparts and become long-lived self-renewing cells. Underlining the physiological relevance of our findings, circulating monocytes also contribute to the expanding pool of macrophages in the liver shortly after birth, when macrophage niches become available during normal organ growth. Thus, like embryonic precursors, monocytes can and do give rise to self-renewing tissue-resident macrophages if the niche is available to them.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular , Autorrenovación de las Células , Macrófagos del Hígado/citología , Monocitos/citología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
20.
J Exp Med ; 211(6): 1019-25, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24799501

RESUMEN

There is currently no paradigm in immunology that enables an accurate prediction of how the immune system will respond to any given agent. Here we show that the immunological responses induced by members of a broad class of inorganic crystalline materials are controlled purely by their physicochemical properties in a highly predictable manner. We show that structurally and chemically homogeneous layered double hydroxides (LDHs) can elicit diverse human dendritic cell responses in vitro. Using a systems vaccinology approach, we find that every measured response can be modeled using a subset of just three physical and chemical properties for all compounds tested. This correlation can be reduced to a simple linear equation that enables the immunological responses stimulated by newly synthesized LDHs to be predicted in advance from these three parameters alone. We also show that mouse antigen-specific antibody responses in vivo and human macrophage responses in vitro are controlled by the same properties, suggesting they may control diverse responses at both individual component and global levels of immunity. This study demonstrates that immunity can be determined purely by chemistry and opens the possibility of rational manipulation of immunity for therapeutic purposes.


Asunto(s)
Formación de Anticuerpos/inmunología , Células Dendríticas/inmunología , Hidróxidos/inmunología , Macrófagos/inmunología , Animales , Anticuerpos/sangre , Anticuerpos/inmunología , Células Cultivadas , Cristalización , Citocinas/inmunología , Citocinas/metabolismo , Células Dendríticas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Hidróxidos/química , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Análisis Multivariante , Ovalbúmina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...