Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Circuits Syst ; 18(1): 200-214, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37782619

RESUMEN

In this article, three different implementations of an Axon-Hillock circuit are presented, one of the basic building blocks of spiking neural networks. In this work, we explored the design of such circuits using a unipolar thin-film transistor technology based on amorphous InGaZnO, often used for large-area electronics. All the designed circuits are fabricated by direct material deposition and patterning on top of a flexible polyimide substrate. Axon-Hillock circuits presented in this article consistently show great adaptability of the basic properties of a spiking neuron such as output spike frequency adaptation and output spike width adaptation. Additional degrees of adaptability are demonstrated with each of the Axon-Hillock circuit varieties: neuron circuit threshold voltage adaptation, differentiation between input signal importance, and refractory period modulation. The proposed neuron can change its firing frequency up to three orders of magnitude by varying a single voltage brought to a circuit terminal. This allows the neuron to function, and potentially learn, at vastly different timescales that coincide with the biologically meaningful timescales, going from milliseconds to seconds, relevant for circuits meant for interaction with the environment. Thanks to careful design choices, the average measured power consumption is kept in the nW range, realistically allowing upscaling towards the spiking neural networks in the future. The spiking neuron with refractory period modulation presented in this work has an area of 607.3 µm × 492.2 µm, it experimentally demonstrated firing rates as low as 11.926 mHz, and its energy consumption per spike is ≈ 700 pJ at 30 Hz.


Asunto(s)
Modelos Neurológicos , Neuronas , Neuronas/fisiología , Redes Neurales de la Computación
2.
Sensors (Basel) ; 23(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37960502

RESUMEN

Thin-film photodiodes (TFPD) monolithically integrated on the Si Read-Out Integrated Circuitry (ROIC) are promising imaging platforms when beyond-silicon optoelectronic properties are required. Although TFPD device performance has improved significantly, the pixel development has been limited in terms of noise characteristics compared to the Si-based image sensors. Here, a thin-film-based pinned photodiode (TF-PPD) structure is presented, showing reduced kTC noise and dark current, accompanied with a high conversion gain (CG). Indium-gallium-zinc oxide (IGZO) thin-film transistors and quantum dot photodiodes are integrated sequentially on the Si ROIC in a fully monolithic scheme with the introduction of photogate (PG) to achieve PPD operation. This PG brings not only a low noise performance, but also a high full well capacity (FWC) coming from the large capacitance of its metal-oxide-semiconductor (MOS). Hence, the FWC of the pixel is boosted up to 1.37 Me- with a 5 µm pixel pitch, which is 8.3 times larger than the FWC that the TFPD junction capacitor can store. This large FWC, along with the inherent low noise characteristics of the TF-PPD, leads to the three-digit dynamic range (DR) of 100.2 dB. Unlike a Si-based PG pixel, dark current contribution from the depleted semiconductor interfaces is limited, thanks to the wide energy band gap of the IGZO channel material used in this work. We expect that this novel 4 T pixel architecture can accelerate the deployment of monolithic TFPD imaging technology, as it has worked for CMOS Image sensors (CIS).

3.
Appl Opt ; 62(17): F21-F30, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37707127

RESUMEN

Image sensors are must-have components of most consumer electronics devices. They enable portable camera systems, which find their way into billions of devices annually. Such high volumes are possible thanks to the complementary metal-oxide semiconductor (CMOS) platform, leveraging wafer-scale manufacturing. Silicon photodiodes, at the core of CMOS image sensors, are perfectly suited to replicate human vision. Thin-film absorbers are an alternative family of photoactive materials, distinguished by the layer thickness comparable with or smaller than the wavelength of interest. They allow design of imagers with functionalities beyond Si-based sensors, such as transparency or detectivity at wavelengths above Si cutoff (e.g., short-wave infrared). Thin-film image sensors are an emerging device category. While intensive research is ongoing to achieve sufficient performance of thin-film photodetectors, to our best knowledge, there have been few complete studies on their integration into advanced systems. In this paper, we will describe several types of image sensors being developed at imec, based on organic, quantum dot, and perovskite photodiode and show their figures of merit. We also discuss the methodology for selecting the most appropriate sensor architecture (integration with thin-film transistor or CMOS). Application examples based on imec proof-of-concept sensors are demonstrated to showcase emerging use cases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA