Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 21(4)2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33267126

RESUMEN

Earthquakes are the most energetic phenomena in the lithosphere: their study and comprehension are greatly worth doing because of the obvious importance for society. Geosystemics intends to study the Earth system as a whole, looking at the possible couplings among the different geo-layers, i.e., from the earth's interior to the above atmosphere. It uses specific universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms (e.g., ground, marine or satellite observations). Its main objective is to understand the particular phenomenon of interest from a holistic point of view. Central is the use of entropy, together with other physical quantities that will be introduced case by case. In this paper, we will deal with earthquakes, as final part of a long-term chain of processes involving, not only the interaction between different components of the Earth's interior but also the coupling of the solid earth with the above neutral or ionized atmosphere, and finally culminating with the main rupture along the fault of concern. Particular emphasis will be given to some Italian seismic sequences.

2.
Trends Plant Sci ; 19(1): 1-4, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24238701

RESUMEN

The geomagnetic field (GMF) is steadily acting on living systems, and influences many biological processes. In animals, the mechanistic origin of the GMF effect has been clarified and cryptochrome has been suggested as a chemical magnetoreceptor. Here we propose a possible role for the GMF variations in plant evolution.


Asunto(s)
Criptocromos/fisiología , Fenómenos Magnéticos , Plantas/genética , Evolución Biológica , Luz , Proteínas de Plantas/fisiología , Plantas/efectos de la radiación , Transducción de Señal
3.
PLoS One ; 6(10): e26672, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22046329

RESUMEN

BACKGROUND: Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls. METHODOLOGY/PRINCIPAL FINDINGS: In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24-48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. CONCLUSIONS/SIGNIFICANCE: While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.


Asunto(s)
Fenómenos de Retorno al Lugar Habitual , Magnetismo , Tortugas/fisiología , Migración Animal , Animales , Geografía , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...