Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Vaccines (Basel) ; 12(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675725

RESUMEN

The worldwide spread of SARS-CoV-2 has led to a significant economic and social burden on a global scale. Even though the pandemic has concluded, apprehension remains regarding the emergence of highly transmissible variants capable of evading immunity induced by either vaccination or prior infection. The success of viral penetration is due to the specific amino acid residues of the receptor-binding motif (RBM) involved in viral attachment. This region interacts with the cellular receptor ACE2, triggering a neutralizing antibody (nAb) response. In this study, we evaluated serum immunogenicity from individuals who received either a single dose or a combination of different vaccines against the original SARS-CoV-2 strain and a mutated linear RBM. Despite a modest antibody response to wild-type SARS-CoV-2 RBM, the Omicron variants exhibit four mutations in the RBM (S477N, T478K, E484A, and F486V) that result in even lower antibody titers. The primary immune responses observed were directed toward IgA and IgG. While nAbs typically target the RBD, our investigation has unveiled reduced seroreactivity within the RBD's crucial subregion, the RBM. This deficiency may have implications for the generation of protective nAbs. An evaluation of S1WT and S2WT RBM peptides binding to nAbs using microscale thermophoresis revealed a higher affinity (35 nM) for the S2WT sequence (GSTPCNGVEGFNCYF), which includes the FNCY patch. Our findings suggest that the linear RBM of SARS-CoV-2 is not an immunodominant region in vaccinated individuals. Comprehending the intricate dynamics of the humoral response, its interplay with viral evolution, and host genetics is crucial for formulating effective vaccination strategies, targeting not only SARS-CoV-2 but also anticipating potential future coronaviruses.

2.
Infect Drug Resist ; 17: 507-529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348231

RESUMEN

Acinetobacter pneumonia is a significant healthcare-associated infection that poses a considerable challenge to clinicians due to its multidrug-resistant nature. Recent world events, such as the COVID-19 pandemic, have highlighted the need for effective treatment and management strategies for Acinetobacter pneumonia. In this review, we discuss lessons learned from recent world events, particularly the COVID-19 pandemic, in the context of the treatment and management of Acinetobacter pneumonia. We performed an extensive literature review to uncover studies and information pertinent to the topic. The COVID-19 pandemic underscored the importance of infection control measures in healthcare settings, including proper hand hygiene, isolation protocols, and personal protective equipment use, to prevent the spread of multidrug-resistant pathogens like Acinetobacter. Additionally, the pandemic highlighted the crucial role of antimicrobial stewardship programs in optimizing antibiotic use and curbing the emergence of resistance. Advances in diagnostic techniques, such as rapid molecular testing, have also proven valuable in identifying Acinetobacter infections promptly. Furthermore, due to the limited availability of antibiotics for treating infections caused A. baumannii, alternative strategies are needed like the use of antimicrobial peptides, bacteriophages and their enzymes, nanoparticles, photodynamic and chelate therapy. Recent world events, particularly the COVID-19 pandemic, have provided valuable insights into the treatment and management of Acinetobacter pneumonia. These lessons emphasize the significance of infection control, antimicrobial stewardship, and early diagnostics in combating this challenging infection.

3.
Vaccines (Basel) ; 11(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38140154

RESUMEN

BACKGROUND: The newly introduced COVID-19 vaccines have reduced disease severity and hospitalizations. However, they do not significantly prevent infection or transmission. In the same context, measuring IgM and IgG antibody levels is important, but it does not provide information about the status of the mucosal immune response. This article describes a comprehensive mapping of IgA epitopes of the S protein, its cross-reactivity, and the development of an ELISA-peptide assay. METHODS: IgA epitope mapping was conducted using SPOT synthesis and sera from RT-qPCR COVID-19-positive patients. Specific and cross-reacting epitopes were identified, and an evolutionary analysis from the early Wuhan strain to the Omicron variant was performed using bioinformatics tools and a microarray of peptides. The selected epitopes were chemically synthesized and evaluated using ELISA-IgA. RESULTS: A total of 40 IgA epitopes were identified with 23 in S1 and 17 in the S2 subunit. Among these, at least 23 epitopes showed cross-reactivity with DENV and other organisms and 24 showed cross-reactivity with other associated coronaviruses. Three MAP4 polypeptides were validated by ELISA, demonstrating a sensitivity of 90-99.96% and a specificity of 100%. Among the six IgA-RBD epitopes, only the SC/18 epitope of the Omicron variants (BA.2 and BA.2.12.1) presented a single IgA epitope. CONCLUSIONS: This research unveiled the IgA epitome of the S protein and identified many epitopes that exhibit cross-reactivity with DENV and other coronaviruses. The S protein of variants from Wuhan to Omicron retains many conserved IgA epitopes except for one epitope (#SCov/18). The cross-reactivity with DENV suggests limitations in using the whole S protein or the S1/S2/RBD segment for IgA serological diagnostic tests for COVID-19. The expression of these identified specific epitopes as diagnostic biomarkers could facilitate monitoring mucosal immunity to COVID-19, potentially leading to more accurate diagnoses and alternative mucosal vaccines.

4.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37765087

RESUMEN

The rise in antibiotic-resistant strains of clinically important pathogens is a major threat to global health. The World Health Organization (WHO) has recognized the urgent need to develop alternative treatments to address the growing list of priority pathogens. Antimicrobial peptides (AMPs) rank among the suggested options with proven activity and high potential to be developed into effective drugs. Many AMPs are naturally produced by living organisms protecting the host against pathogens as a part of their innate immunity. Mechanisms associated with AMP actions include cell membrane disruption, cell wall weakening, protein synthesis inhibition, and interference in nucleic acid dynamics, inducing apoptosis and necrosis. Acinetobacter baumannii is a critical pathogen, as severe clinical implications have developed from isolates resistant to current antibiotic treatments and conventional control procedures, such as UV light, disinfectants, and drying. Here, we review the natural AMPs representing primary candidates for new anti-A. baumannii drugs in post-antibiotic-era and present computational tools to develop the next generation of AMPs with greater microbicidal activity and reduced toxicity.

5.
Front Physiol ; 14: 1203472, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37565145

RESUMEN

Long COVID-19 is a condition characterized by persistent symptoms lasting beyond the acute phase of COVID-19. Long COVID-19 produces diverse symptomatology and can impact organs and systems, including the hematological system. Several studies have reported, in COVID-19 patients, hematological abnormalities. Most of these alterations are associated with a higher risk of severe disease and poor outcomes. This literature review identified studies reporting hematological parameters in individuals with Long COVID-19. Findings suggest that Long COVID-19 is associated with a range of sustained hematological alterations, including alterations in red blood cells, anemia, lymphopenia, and elevated levels of inflammatory markers such as ferritin, D-dimer, and IL-6. These alterations may contribute to a better understanding of the pathophysiology of Long COVID-19 and its associated symptoms. However, further research is needed to elucidate the underlying mechanisms and potential treatments for these hematological changes in individuals with Long COVID-19.

6.
Int J Mol Sci ; 24(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37240305

RESUMEN

This Editorial highlights the various observations made in the Special Issue of the International Journal of Molecular Sciences on "Recent Advances in Biochemistry and Molecular Biology of Infectious Diseases" [...].


Asunto(s)
Enfermedades Transmisibles , Biología Molecular , Humanos , Bioquímica
7.
Toxins (Basel) ; 15(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37104177

RESUMEN

Tetanus is an acute, fatal disease caused by exotoxins released from Clostridium tetani during infections. A protective humoral immune response can be induced by vaccinations with pediatric and booster combinatorial vaccines that contain inactivated tetanus neurotoxin (TeNT) as a major antigen. Although some epitopes in TeNT have been described using various approaches, a comprehensive list of its antigenic determinants that are involved with immunity has not been elucidated. To this end, a high-resolution analysis of the linear B-cell epitopes in TeNT was performed using antibodies generated in vaccinated children. Two hundred sixty-four peptides that cover the entire coding sequence of the TeNT protein were prepared in situ on a cellulose membrane through SPOT synthesis and probed with sera from children vaccinated (ChVS) with a triple DTP-vaccine to map continuous B-cell epitopes, which were further characterized and validated using immunoassays. Forty-four IgG epitopes were identified. Four (TT-215-218) were chemically synthesized as multiple antigen peptides (MAPs) and used in peptide ELISAs to screen post-pandemic DTP vaccinations. The assay displayed a high performance with high sensitivity (99.99%) and specificity (100%). The complete map of linear IgG epitopes induced by vaccination with inactivated TeNT highlights three key epitopes involved in the efficacy of the vaccine. Antibodies against epitope TT-8/G can block enzymatic activity, and those against epitopes TT-41/G and TT-43/G can interfere with TeNT binding to neuronal cell receptors. We further show that four of the epitopes identified can be employed in peptide ELISAs to assess vaccine coverage. Overall, the data suggest a set of select epitopes to engineer new, directed vaccines.


Asunto(s)
Epítopos de Linfocito B , Tétanos , Humanos , Niño , Mapeo Epitopo , Tétanos/prevención & control , Péptidos , Vacunación , Inmunoglobulina G
8.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983046

RESUMEN

Leishmaniasis represents a complex of diseases with a broad clinical spectrum and epidemiological diversity, considered a major public health problem. Although there is treatment, there are still no vaccines for cutaneous leishmaniasis. Because Leishmania spp. is an intracellular protozoan with several escape mechanisms, a vaccine must provoke cellular and humoral immune responses. Previously, we identified the Leishmania homolog of receptors for activated C kinase (LACK) and phosphoenolpyruvate carboxykinase (PEPCK) proteins as strong immunogens and candidates for the development of a vaccine strategy. The present work focuses on the in silico prediction and characterization of antigenic epitopes that might interact with mice or human major histocompatibility complex class I. After immunogenicity prediction on the Immune Epitope Database (IEDB) and the Database of MHC Ligands and Peptide Motifs (SYFPEITHI), 26 peptides were selected for interaction assays with infected mouse lymphocytes by flow cytometry and ELISpot. This strategy identified nine antigenic peptides (pL1-H2, pPL3-H2, pL10-HLA, pP13-H2, pP14-H2, pP15-H2, pP16-H2, pP17-H2, pP18-H2, pP26-HLA), which are strong candidates for developing a peptide vaccine against leishmaniasis.


Asunto(s)
Leishmania mexicana , Leishmania , Leishmaniasis Cutánea , Humanos , Animales , Ratones , Epítopos , Antígenos de Histocompatibilidad Clase I , Antígenos HLA , Leishmania/metabolismo , Péptidos/química , Vacunas de Subunidad , Complejo Mayor de Histocompatibilidad
9.
Artículo en Inglés | MEDLINE | ID: mdl-36554438

RESUMEN

Healthcare-associated infections (HAI) worldwide includes infections by ESKAPE-E pathogens. Environmental surfaces and fomites are important components in HAI transmission dynamics, and shoe soles are vectors of HAI. Ultraviolet (UV) disinfection is an effective method to inactivate pathogenic microorganisms. In this study, we investigated whether the SANITECH UV-C shoe sole decontaminator equipment that provides germicidal UV-C radiation could effectively reduce this risk of different pathogens. Six standard strains and four clinical MDR strains in liquid and solid medium were exposed to a UV-C System at specific concentrations at other times. Bacterial inactivation (growth and cultivability) was investigated using colony counts and resazurin as metabolic indicators. SEM was performed to assess the membrane damage. Statistically significant reduction in cell viability for all ATCCs strains occurred after 10 s of exposure to the UV-C system, except for S. enterica, which only occurred at 20 s. The cell viability of P. aeruginosa (90.9%), E. faecalis and A. baumannii (85.3%), S. enterica (82.9%), E. coli (79.2%) and S. aureus (71.9%) was reduced considerably at 20 s. In colony count, after 12 s of UV-C exposure, all ATCC strains showed a 100% reduction in CFU counts, except for A. baumannii, which reduced by 97.7%. A substantial reduction of colonies above 3 log10 was observed at 12 and 20 s in all bacterial strains tested, except for A. baumannii ATCC 19606 (12 s). The exposure of ATCCs bacterial strains to the UV-C system for only 2 s was able to reduce 100% in the colony forming units (CFU) count in all ATCCs strains, S. aureus, P. aeruginosa, E. coli, A. baumannii, E. faecalis, except the S. enterica strain which had a statistically significant reduction of 99.7%. In ATCC strains, there was a substantial decrease in colonies after 4 s (sec) of exposure to the UV-C system, with a reduction ranging from 3.78-4.15 log10 CFU/mL. This reduction was observed in MDR/ESKAPE-E strains within 10 s, showing that UV-C could eliminate above 3.84 log10 CFU/mL. SEM showed a reduction of pili-like appendages after UV-C treatment in all strains except for E. coli (ATCC 25922). The Sanitech UV-C shoe sole decontaminator equipment from Astech Serv. and Fabrication Ltd. (Petrópolis, Brazil), effectively killed in vitro a series of ATCCs and MDR/ESKAPE-E bacteria of sanitary interest, commonly found in the hospital environment.


Asunto(s)
Escherichia coli , Staphylococcus aureus , Recuento de Colonia Microbiana , Bacterias , Hospitales , Desinfección/métodos , Rayos Ultravioleta
10.
Pathogens ; 11(8)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36014992

RESUMEN

Zoonotic-origin infectious diseases are one of the major concerns of human and veterinary health systems. Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. Many ticks' transmitted infections are still endemic in the Americas, Europe, and Africa and represent approximately 17% of their infectious diseases population. Although our scientific capacity to identify and diagnose diseases is increasing, it remains a challenge in the case of tick-borne conditions. For example, in 2017, 160 cases of the Brazilian Spotted Fever (BSF, a tick-borne illness) were confirmed, alarming the notifiable diseases information system. Conversely, Brazilian borreliosis and ehrlichiosis do not require notification. Still, an increasing number of cases in humans and dogs have been reported in southeast and northeastern Brazil. Immunological methods applied to human and dog tick-borne diseases (TBD) show low sensitivity and specificity, cross-reactions, and false IgM positivity. Thus, the diagnosis and management of TBD are hampered by the personal tools and indirect markers used. Therefore, specific and rapid methods urgently need to be developed to diagnose the various types of tick-borne bacterial diseases. This review presents a brief historical perspective on the evolution of serological assays and recent advances in diagnostic tests for TBD (ehrlichiosis, BSF, and borreliosis) in humans and dogs, mainly applied in Brazil. Additionally, this review covers the emerging technologies available in diagnosing TBD, including biosensors, and discusses their potential for future use as gold standards in diagnosing these diseases.

11.
Molecules ; 27(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807244

RESUMEN

BACKGROUND: Health care-associated infections (HAIs) are a significant public health problem worldwide, favoring multidrug-resistant (MDR) microorganisms. The SARS-CoV-2 infection was negatively associated with the increase in antimicrobial resistance, and the ESKAPE group had the most significant impact on HAIs. The study evaluated the bactericidal effect of a high concentration of O3 gas on some reference and ESKAPE bacteria. MATERIAL AND METHODS: Four standard strains and four clinical or environmental MDR strains were exposed to elevated ozone doses at different concentrations and times. Bacterial inactivation (growth and cultivability) was investigated using colony counts and resazurin as metabolic indicators. Scanning electron microscopy (SEM) was performed. RESULTS: The culture exposure to a high level of O3 inhibited the growth of all bacterial strains tested with a statistically significant reduction in colony count compared to the control group. The cell viability of S. aureus (MRSA) (99.6%) and P. aeruginosa (XDR) (29.2%) was reduced considerably, and SEM showed damage to bacteria after O3 treatment Conclusion: The impact of HAIs can be easily dampened by the widespread use of ozone in ICUs. This product usually degrades into molecular oxygen and has a low toxicity compared to other sanitization products. However, high doses of ozone were able to interfere with the growth of all strains studied, evidencing that ozone-based decontamination approaches may represent the future of hospital cleaning methods.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infección Hospitalaria , Ozono , Antibacterianos/farmacología , Bacterias , Infección Hospitalaria/microbiología , Humanos , Ozono/farmacología , Pseudomonas aeruginosa , SARS-CoV-2 , Staphylococcus aureus
12.
Curr Issues Mol Biol ; 44(5): 2089-2106, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678670

RESUMEN

Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.

13.
Biosensors (Basel) ; 12(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35624573

RESUMEN

BACKGROUND: The coronavirus disease of 2019 (COVID-19) is caused by an infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was recognized in late 2019 and has since spread worldwide, leading to a pandemic with unprecedented health and financial consequences. There remains an enormous demand for new diagnostic methods that can deliver fast, low-cost, and easy-to-use confirmation of a SARS-CoV-2 infection. We have developed an affordable electrochemical biosensor for the rapid detection of serological immunoglobulin G (IgG) antibody in sera against the spike protein. MATERIALS AND METHODS: A previously identified linear B-cell epitope (EP) specific to the SARS-CoV-2 spike glycoprotein and recognized by IgG in patient sera was selected for the target molecule. After synthesis, the EP was immobilized onto the surface of the working electrode of a commercially available screen-printed electrode (SPE). The capture of SARS-CoV-2-specific IgGs allowed the formation of an immunocomplex that was measured by square-wave voltammetry from its generation of hydroquinone (HQ). RESULTS: An evaluation of the performance of the EP-based biosensor presented a selectivity and specificity for COVID-19 of 93% and 100%, respectively. No cross-reaction was observed to antibodies against other diseases that included Chagas disease, Chikungunya, Leishmaniosis, and Dengue. Differentiation of infected and non-infected individuals was possible even at a high dilution factor that decreased the required sample volumes to a few microliters. CONCLUSION: The final device proved suitable for diagnosing COVID-19 by assaying actual serum samples, and the results displayed good agreement with the molecular biology diagnoses. The flexibility to conjugate other EPs to SPEs suggests that this technology could be rapidly adapted to diagnose new variants of SARS-CoV-2 or other pathogens.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , COVID-19/diagnóstico , Electrodos , Epítopos , Glicoproteínas , Humanos , Inmunoglobulina G , SARS-CoV-2
14.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409149

RESUMEN

Hemopexin (Hx) is a plasma glycoprotein that scavenges heme (Fe(III) protoporphyrin IX). Hx has important implications in hemolytic disorders and hemorrhagic conditions because releasing hemoglobin increases the labile heme, which is potentially toxic, thus producing oxidative stress. Therefore, Hx has been considered for therapeutic use and diagnostics. In this work, we analyzed and mapped the interaction sequences of Hx with hemin and hemoglobin. The spot-synthesis technique was used to map human hemopexin (P02790) binding to hemin and human hemoglobin. A library of 15 amino acid peptides with a 10-amino acid overlap was designed to represent the entire coding region (aa 1-462) of hemopexin and synthesized onto cellulose membranes. An in silico approach was taken to analyze the amino acid frequency in the identified interaction regions, and molecular docking was applied to assess the protein-protein interaction. Seven linear peptide sequences in Hx were identified to bind hemin (H1-H7), and five were described for Hb (Hb1-Hb5) interaction, with just two sequences shared between hemin and Hb. The amino acid composition of the identified sequences demonstrated that histidine residues are relevant for heme binding. H105, H293, H373, H400, H429, and H462 were distributed in the H1-H7 peptide sequences, but other residues may also play an important role. Molecular docking analysis demonstrated Hx's association with the ß-chain of Hb, with several hotspot amino acids that coordinated the interaction. This study provides new insights into Hx-hemin binding motifs and protein-protein interactions with Hb. The identified binding sequences and specific peptides can be used for therapeutic purposes and diagnostics as hemopexin is under investigation to treat different diseases and there is an urgent need for diagnostics using labile heme when monitoring hemolysis.


Asunto(s)
Hemina , Hemopexina , Compuestos Férricos , Hemo/metabolismo , Hemina/metabolismo , Hemoglobinas/metabolismo , Hemólisis , Hemopexina/metabolismo , Histidina , Humanos , Simulación del Acoplamiento Molecular
15.
Pathogens ; 11(2)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215210

RESUMEN

Intracellular parasites such as Trypanosoma cruzi need to acquire valuable carbon sources from the host cell to replicate. Here, we investigated the energetic metabolism of T. cruzi during metacyclogenesis through the determination of enzymatic activities and quantification by HPLC of glycolytic and Krebs cycle short-chain carboxylic acids. Altered concentrations in pyruvate, acetate, succinate, and glycerate were measured during the growth of epimastigote in the complex medium BHI and their differentiation to trypomastigotes in the chemically defined medium, TAU3AAG. These alterations should represent significant differential metabolic modifications utilized by either form to generate energy. This paper is the first work dealing with the intracellular organic acid concentration measurement in T. cruzi parasites. Although it confirms the previous assumption of the importance of carbohydrate metabolism, it yields an essential improvement in T. cruzi metabolism knowledge.

16.
Membranes (Basel) ; 12(2)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35207030

RESUMEN

BACKGROUND: Angiostrongyliasis, the leading cause universal of eosinophilic meningitis, is an emergent disease due to Angiostrongylus cantonensis (rat lungworm) larvae, transmitted accidentally to humans. The diagnosis of human angiostrongyliasis is based on epidemiologic characteristics, clinical symptoms, medical history, and laboratory findings, particularly hypereosinophilia in blood and cerebrospinal fluid. Thus, the diagnosis is difficult and often confused with those produced by other parasitic diseases. Therefore, the development of a fast and specific diagnostic test for angiostrongyliasis is a challenge mainly due to the lack of specificity of the described tests, and therefore, the characterization of a new target is required. MATERIAL AND METHODS: Using bioinformatics tools, the putative presenilin (PS) protein C7BVX5-1 was characterized structurally and phylogenetically. A peptide microarray approach was employed to identify single and specific epitopes, and tetrameric epitope peptides were synthesized to evaluate their performance in an ELISA-peptide assay. RESULTS: The data showed that the A. cantonensis PS protein presents nine transmembrane domains, the catalytic aspartyl domain [(XD (aa 241) and GLGD (aa 332-335)], between TM6 and TM7 and the absence of the PALP and other characteristics domains of the class A22 and homologous presenilin (PSH). These individualities make it an atypical sub-branch of the PS family, located in a separate subgroup along with the enzyme Haemogonchus contournus and separated from other worm subclasses. Twelve B-linear epitopes were identified by microarray of peptides and validated by ELISA using infected rat sera. In addition, their diagnostic performance was demonstrated by an ELISA-MAP4 peptide. CONCLUSIONS: Our data show that the putative AgPS is an atypical multi-pass transmembrane protein and indicate that the protein is an excellent immunological target with two (PsAg3 and PsAg9) A. costarisencis cross-reactive epitopes and eight (PsAg1, PsAg2, PsAg6, PsAg7, PsAg8, PsAg10, PsAg11, PsAg12) apparent unique A. cantonensis epitopes. These epitopes could be used in engineered receptacle proteins to develop a specific immunological diagnostic assay for angiostrongyliasis caused by A. cantonensis.

17.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613974

RESUMEN

Oral immunization with the choleric toxin (CT) elicits a high level of protection against its enterotoxin activities and can control cholera in endemic settings. However, the complete B-cell epitope map of the CT that is responsible for protection remains to be clarified. A library of one-hundred, twenty-two 15-mer peptides covering the entire sequence of the three chains of the CT protein (CTP) was prepared by SPOT synthesis. The immunoreactivity of membrane-bound peptides with sera from mice vaccinated with an oral inactivated vaccine (Schankol™) allowed the mapping of continuous B-cell epitopes, topological studies, multi-antigen peptide (MAP) synthesis, and Enzyme-Linked Immunosorbent Assay (ELISA) development. Eighteen IgG epitopes were identified; eight in the CTA, three in the CTB, and seven in the protein P. Three V. cholera specific epitopes, Vc/TxA-3, Vc/TxB-11, and Vc/TxP-16, were synthesized as MAP4 and used to coat ELISA plates in order to screen immunized mouse sera. Sensitivities and specificities of 100% were obtained with the MAP4s of Vc/TxA-3 and Vc/TxB-11. The results revealed a set of peptides whose immunoreactivity reflects the immune response to vaccination. The array of peptide data can be applied to develop improved serological tests in order to detect cholera toxin exposure, as well as next generation vaccines to induce more specific antibodies against the cholera toxin.


Asunto(s)
Vacunas contra el Cólera , Cólera , Vibrio cholerae , Animales , Ratones , Vibrio cholerae/metabolismo , Toxina del Cólera/metabolismo , Epítopos de Linfocito B , Mapeo Epitopo , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Antibacterianos
18.
Pathogens ; 12(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36678389

RESUMEN

The novel Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, has had a monumental impact on public health globally [...].

19.
Biosensors (Basel) ; 11(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34940247

RESUMEN

Diphtheria is a vaccine-preventable disease, yet immunization can wane over time to non-protective levels. We have developed a low-cost, miniaturized electroanalytical biosensor to quantify anti-diphtheria toxin (DTx) immunoglobulin G (anti-DTx IgG) antibody to minimize the risk for localized outbreaks. Two epitopes specific to DTx and recognized by antibodies generated post-vaccination were selected to create a bi-epitope peptide, biEP, by synthesizing the epitopes in tandem. The biEP peptide was conjugated to the surface of a pencil-lead electrode (PLE) integrated into a portable electrode holder. Captured anti-DTx IgG was measured by square wave voltammetry from the generation of hydroquinone (HQ) from the resulting immunocomplex. The performance of the biEP reagent presented high selectivity and specificity for DTx. Under the optimized working conditions, a logarithmic calibration curve showed good linearity over the concentration range of 10-5-10-1 IU mL-1 and achieved a limit of detection of 5 × 10-6 IU mL-1. The final device proved suitable for interrogating the immunity level against DTx in actual serum samples. Results showed good agreement with those obtained from a commercial enzyme-linked immunosorbent assay. In addition, the flexibility for conjugating other capture molecules to PLEs suggests that this technology could be easily adapted to the diagnoses of other pathogens.


Asunto(s)
Técnicas Biosensibles , Toxina Diftérica , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Inmunoensayo , Inmunoglobulina G/química , Inmunoglobulina G/inmunología
20.
Molecules ; 26(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34770849

RESUMEN

HSV infections, both type 1 and type 2, are among the most widespread viral diseases affecting people of all ages. Their symptoms could be mild, with cold sores up to 10 days of infection, blindness and encephalitis caused by HSV-1 affecting immunocompetent and immunosuppressed individuals. The severe effects derive from co-evolution with the host, resulting in immune evasion mechanisms, including latency and growing resistance to acyclovir and derivatives. An efficient alternative to controlling the spreading of HSV mutations is the exploitation of new drugs, and the possibility of enhancing their delivery through the encapsulation of drugs into nanoparticles, such as liposomes. In this work, liposomes were loaded with a series of 2-aminomethyl- 3-hydroxy-1,4-naphthoquinones derivatives with n-butyl (compound 1), benzyl (compound 2) and nitrobenzene (compound 3) substituents in the primary amine of naphthoquinone. They were previously identified to have significant inhibitory activity against HSV-1. All of the aminomethylnaphthoquinones derivatives encapsulated in the phosphatidylcholine liposomes were able to control the early and late phases of HSV-1 replication, especially those substituted with the benzyl (compound 2) and nitrobenzene (compound 3), which yields selective index values that are almost nine times more efficient than acyclovir. The growing interest of the industry in topical administration against HSV supports our choice of liposome as a drug carrier of aminomethylnaphthoquinones derivatives for formulations of in vivo pre-clinical assays.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Liposomas , Naftoquinonas/química , Naftoquinonas/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Portadores de Fármacos , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Estructura Molecular , Nanopartículas , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...