RESUMEN
Macroautophagy/autophagy is an intracellular process involved in the breakdown of macromolecules and organelles. Recent studies have shown that PKD2/PC2/TRPP2 (polycystin 2, transient receptor potential cation channel), a nonselective cation channel permeable to Ca2+ that belongs to the family of transient receptor potential channels, is required for autophagy in multiple cell types by a mechanism that remains unclear. Here, we report that PKD2 forms a protein complex with BECN1 (beclin 1), a key protein required for the formation of autophagic vacuoles, by acting as a scaffold that interacts with several co-modulators via its coiled-coil domain (CCD). Our data identified a physical and functional interaction between PKD2 and BECN1, which depends on one out of two CCD domains (CC1), located in the carboxy-terminal tail of PKD2. In addition, depletion of intracellular Ca2+ with BAPTA-AM not only blunted starvation-induced autophagy but also disrupted the PKD2-BECN1 complex. Consistently, PKD2 overexpression triggered autophagy by increasing its interaction with BECN1, while overexpression of PKD2D509V, a Ca2+ channel activity-deficient mutant, did not induce autophagy and manifested diminished interaction with BECN1. Our findings show that the PKD2-BECN1 complex is required for the induction of autophagy, and its formation depends on the presence of the CC1 domain of PKD2 and on intracellular Ca2+ mobilization by PKD2. These results provide new insights regarding the molecular mechanisms by which PKD2 controls autophagy.Abbreviations: ADPKD: autosomal dominant polycystic kidney disease; ATG: autophagy-related; ATG14/ATG14L: autophagy related 14; Baf A1: bafilomycin A1; BCL2/Bcl-2: BCL2 apoptosis regulator; BCL2L1/BCL-XL: BCL2 like 1; BECN1: beclin 1; CCD: coiled-coil domain; EBSS: Earle's balanced salt solution; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GOLGA2/GM130: golgin A2; GST: glutathione s-transferase; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; NBR1: NBR1 autophagy cargo receptor; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PKD2/PC2: polycystin 2, transient receptor potential cation channel; RTN4/NOGO: reticulon 4; RUBCN/RUBICON: rubicon autophagy regulator; SQSTM1/p62: sequestosome 1; UVRAG: UV radiation resistance associated; WIPI2: WD repeat domain, phosphoinositide interacting 2.
Asunto(s)
Autofagia , Beclina-1/fisiología , Canales Catiónicos TRPP/fisiología , Beclina-1/metabolismo , Western Blotting , Técnica del Anticuerpo Fluorescente , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , Canales Catiónicos TRPP/metabolismoRESUMEN
Calmodulin (CaM) is a ubiquitous cytosolic protein that plays a critical role in regulating cellular functions by altering the activity of a large number of ion channels. There are many examples for CaM directly mediating the feedback effects of Ca2+ on Ca2+ channels. Recently the molecular mechanisms by which CaM interacts with voltage-gated Ca2+ channels, Ca(2+)-activated K+ channels and ryanodine receptors have been clarified. CaM plays an important role in regulating these ion channels through lobe-specific Ca2+ detection. CaM seems to behave as a channel subunit. It binds at low [Ca2+] and undergoes conformational changes upon binding of Ca2+, leading to an interaction with another part of the channel to regulate its gating. Here we focus on the mechanism by which CaM regulates the inositol 1,4,5-trisphosphate receptor (IP3R). Although the IP3R is inhibited by CaM and by other CaM-like proteins in the presence of Ca2+, we conclude that CaM does not act as the Ca2+ sensor for IP3R function. Furthermore we discuss a novel Ca(2+)-induced Ca(2+)-release mechanism found in A7r5 (embryonic rat aorta) and 16HBE14o- (human bronchial mucosa) cells for which CaM acts as a Ca2+ sensor.
Asunto(s)
Canales de Calcio/metabolismo , Calmodulina/fisiología , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Animales , Células Cultivadas , Humanos , Receptores de Inositol 1,4,5-Trifosfato , Ratas , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de SeñalRESUMEN
Calmodulin (CaM) is a ubiquitous cytosolic protein that plays a critical role in regulating cellular functions by altering the activity of a large number of ion channels. There are many examples for CaM directly mediating the feedback effects of Ca2+ on Ca2+ channels. Recently the molecular mechanisms by which CaM interacts with voltage-gated Ca2+ channels, Ca2+-activated K+ channels and ryanodine receptors have been clarified. CaM plays an important role in regulating these ion channels through lobe-specific Ca2+ detection. CaM seems to behave as a channel subunit. It binds at low [Ca2+] and undergoes conformational changes upon binding of Ca2+, leading to an interaction with another part of the channel to regulate its gating. Here we focus on the mechanism by which CaM regulates the inositol 1,4,5-trisphosphate receptor (IP3R). Although the IP3R is inhibited by CaM and by other CaM-like proteins in the presence of Ca2+, we conclude that CaM does not act as the Ca2+ sensor for IP3R function. Furthermore we discuss a novel Ca2+-induced Ca2+-release mechanism found in A7r5 (embryonic rat aorta) and 16HBE14o- (human bronchial mucosa) cells for which CaM acts as a Ca2+ sensor.