Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anat ; 223(2): 152-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23701183

RESUMEN

The agouti (Dasyprocta aguti Linnaeus, 1766) is a wild rodent belonging to the family Dasyproctidae that is found throughout Brazil and feeds on fruits and seeds. The aim of the present study was to describe the following features of the tongue of agouti: its morphological structures, the three-dimensional characteristics of the lingual papillae surface, the connective tissue cores (CTCs) and the epithelial cell ultrastructure. Four types of papillae were observed on the dorsal surface of the tongue with a triangular shape: filiform, fungiform, foliate and vallate. Filiform papillae were distributed throughout the tongue surface, and removal of the epithelial surface revealed conical CTCs and multifilaments. Fungiform papillae were observed in the rostral and middle regions, whereas foliate papillae developed in pairs on the lateral margin of the caudal region. Removal of the epithelium in these regions revealed CTCs with parallel laminar conformation. Vallate papillae were arranged in a V-shape in the caudal region, and their CTCs ranged in shape from elongate to ovoid. The ultrastructural components of the dorsal epithelium were the basal, spinous, granular and keratinised layers. A broad area with cytoplasmic projections was identified in the interface region between the lamina propria and the basal layer. Flattened cells with intermediate filaments were observed in the transitional region between spinous and granular layers. The keratinised layer was composed of superimposed epithelial cells where desmosomes and cell-surface microridges were observed. These structural features, including the three-dimensional aspects of the lingual papillae, the CTCs and the epithelial ultrastructure, indicate that when compared with other animals, particularly other rodent species, the morphological features of the tongue of agouti are relatively well developed, especially regarding foliate and vallate papillae.


Asunto(s)
Roedores/anatomía & histología , Lengua/anatomía & histología , Animales , Tejido Conectivo/ultraestructura , Células Epiteliales/ultraestructura , Microscopía Electrónica , Microscopía Electrónica de Transmisión , Lengua/ultraestructura
2.
Microsc Res Tech ; 75(9): 1292-6, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22522658

RESUMEN

The myotendinous junction (MTJ) is a major area for transmitting force from the skeletal muscle system and acts in joint position and stabilization. This study aimed to use transmission electron microscopy to describe the ultrastructural features of the MTJ of the sternomastoid muscle in Wistar rats from newborn to formation during adulthood and possible changes with aging. Ultrastructural features of the MTJ from the newborn group revealed pattern during development with interactions between muscle cells and extracellular matrix elements with thin folds in the sarcolemma and high cellular activity evidenced through numerous oval mitochondria groupings. The adult group had classical morphological features of the MTJ, with folds in the sarcolemma forming long projections called "finger-like processes" and sarcoplasmic invaginations. Sarcomeres were aligned in series, showing mitochondria near the Z line in groupings between collagen fiber bundles. The old group had altered "finger-like processes," thickened in both levels of sarcoplasmic invaginations and in central connections with the lateral junctions. We conclude that the MTJ undergoes intense activity from newborn to its formation during adulthood. With increasing age, changes to the MTJ were observed in the shapes of the invaginations and "finger-like processes" due to hypoactivity, potentially compromising force transmission and joint stability.


Asunto(s)
Músculos/ultraestructura , Músculos del Cuello/ultraestructura , Tendones/ultraestructura , Envejecimiento , Animales , Animales Recién Nacidos , Matriz Extracelular/ultraestructura , Microscopía Electrónica de Transmisión , Células Musculares/ultraestructura , Ratas , Ratas Wistar , Sarcolema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...