Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 28(24): 30955-30974, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33594565

RESUMEN

The fate of pharmaceuticals during the treatment of effluents is of major concern since they are not completely degraded and because of their persistence and mobility in environment. Indeed, even at low concentrations, they represent a risk to aquatic life and human health. In this work, fourteen pharmaceuticals were monitored in a constructed wetland wastewater treatment plants (WWTP) assessed in both influent and effluent samples. The basic water quality parameters were evaluated, and the removal efficiency of pharmaceutical, potential for bioaccumulation, and the impact of WWTP were assessed using Polar Organic Chemical Integrative Sampler (POCIS) and biofilms. The pharmaceutical compounds were quantified by High Performance Liquid chromatography coupled to mass spectrometry. The sampling campaign was carried out during winter (July/2018) and summer (January/2019). The WWTP performed well regarding the removal of TSS, COD, and BOD5 and succeeded to eliminate a significant part of the organic and inorganic pollution present in domestic wastewater but has low efficiency regarding the removal of pharmaceutical compounds. Biofilms were shown to interact with pharmaceuticals and were reported to play a role in their capture from water. The antibiotics were reported to display a high risk for aquatic organisms.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Brasil , Monitoreo del Ambiente , Humanos , Eliminación de Residuos Líquidos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Humedales
2.
Ecotoxicology ; 29(9): 1293-1305, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32740705

RESUMEN

Biofilms are a consortium of communities of organisms that live in syntrophic relationships and present a higher organization level than that of individual cells. Biofilms dominate microbial life in streams and rivers, enable crucial ecosystem processes, contribute to global biogeochemical flows and represent the main active bacterial life form. Epilithic biofilms are the main biomass found in rivers; their exposure to contaminants can lead to changes in their structure and composition. The composition of these communities is influenced by physicochemical factors, temperature, light and prior exposure to pollutants, among other factors, and it can be used for water quality monitoring purposes. The heterogenous composition of biofilms enables them to accumulate compounds in an integrative manner. Moreover, the availability of several sorption sites and their likely saturation can contribute to bioaccumulation. In aquatic environments, biofilms are also susceptible to the acquisition of antibiotic resistance genes and participate in their dissemination. Anthropic pressure intensification processes continuously expose water resources and, consequently, biofilm communities to different contamination sources. Therefore, the use of biofilms to indicate environmental pollution is reinforced by the progress of studies on the subject. Biofilm communities' response to pollutants in aquatic environments can be mainly influenced by the presence of different organisms, which may change due to community development or age. The current research aims to review studies about biofilm contamination and highlight the importance of biofilm use to better evaluate and maintain the quality of water bodies.


Asunto(s)
Biopelículas , Plaguicidas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Ecosistema
3.
Environ Sci Pollut Res Int ; 27(10): 10581-10598, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31942716

RESUMEN

The total cultivated area in Brazil reached to 62 million ha in 2018, with the predominance of genetically modified soybean and corn (36 and 17 million ha, respectively) in no-tillage systems. In 2018, 5.3 × 105 Mg of active ingredient of pesticides was applied in cropfields, representing about 7.3 L of commercial product by habitant. However, the monitoring of water courses contamination by pesticides remains scarce and is based on traditional grab sampling systems. In this study, we used the grab (water) and passive sampling (Polar Organic Chemical Integrative Sampler-POCIS) to monitor pesticide contamination in the river network of a representative agricultural catchment of southern Brazil. We selected 18 sampling sites located in tributaries and in the main course of the Guaporé River, in Rio Grande do Sul State, with different land use predominance including forest, urban, and agricultural areas. Altogether, 79 and 23 pesticides were, respectively, analyzed in water and POCIS samples. The water of Guaporé River and its tributaries were highly contaminated by many pesticides, especially by four herbicides (2,4-D, atrazine, deethyl-atrazine, and simazine), three fungicides (carbendazim, tebuconazole, and epoxiconazole), and one insecticide (imidacloprid). The amount, type, and concentration of pesticides detected were completely different depending on the sampling technic used. POCIS was effective to discriminate the contamination according to the main land use of each sampling site. The monitored areas with the predominance of soybean cultivation under no-tillage tended to have higher concentrations of fungicide, while in the more diversified region, the herbicides showed higher values. The presence of five herbicides used in corn and grassland forage production was correlated with areas of integrated crop-livestock systems, in contrast to higher contamination by 2,4-D in areas of intensive production of soybean and winter cereals.


Asunto(s)
Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Agricultura , Brasil , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...