Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (200)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955388

RESUMEN

Stem cell and chimeric antigen receptor (CAR) T-cell therapies are emerging as promising therapeutics for organ regeneration and as immunotherapy for various cancers. Despite significant progress having been made in these areas, there is still more to be learned to better understand the pharmacokinetics and pharmacodynamics of the administered therapeutic cells in the living system. For noninvasive, in vivo tracking of cells with positron emission tomography (PET), a novel [89Zr]Zr-p-isothiocyanatobenzyl-desferrioxamine ([89Zr]Zr-DBN)-mediated cell radiolabeling method has been developed utilizing 89Zr (t1/2 78.4 h). The present protocol describes a [89Zr]Zr-DBN-mediated, ready-to-use, radiolabeling synthon for direct radiolabeling of variety of cells, including mesenchymal stem cells, lineage-guided cardiopoietic stem cells, liver regenerating hepatocytes, white blood cells, melanoma cells, and dendritic cells. The developed methodology enables noninvasive PET imaging of cell trafficking for up to 7 days post-administration without affecting the nature or the function of the radiolabeled cells. Additionally, this protocol describes a stepwise method for the radiosynthesis of [89Zr]Zr-DBN, biocompatible formulation of [89Zr]Zr-DBN, preparation of cells for radiolabeling, and finally the radiolabeling of cells with [89Zr]Zr-DBN, including all the intricate details needed for the successful radiolabeling of cells.


Asunto(s)
Neoplasias , Radioisótopos , Humanos , Radioisótopos/uso terapéutico , Tomografía de Emisión de Positrones/métodos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Inmunoterapia Adoptiva , Circonio , Línea Celular Tumoral
2.
Bioconjug Chem ; 33(5): 892-906, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35420782

RESUMEN

Aberrant insulin signaling has been considered one of the risk factors for the development of Alzheimer's disease (AD) and has drawn considerable attention from the research community to further study its role in AD pathophysiology. Herein, we describe the development of an insulin-based novel positron emission tomography (PET) probe, [68Ga]Ga-NOTA-insulin, to noninvasively study the role of insulin in AD. The developed PET probe [68Ga]Ga-NOTA-insulin showed a significantly higher uptake (0.396 ± 0.055 SUV) in the AD mouse brain compared to the normal (0.140 ± 0.027 SUV) mouse brain at 5 min post injection and also showed a similar trend at 10, 15, and 20 min post injection. In addition, [68Ga]Ga-NOTA-insulin was found to have a differential uptake in various brain regions at 30 min post injection. Among the brain regions, the cortex, thalamus, brain stem, and cerebellum showed a significantly higher standard uptake value (SUV) of [68Ga]Ga-NOTA-insulin in AD mice as compared to normal mice. The inhibition of the insulin receptor (IR) with an insulin receptor antagonist peptide (S961) in normal mice showed a similar brain uptake profile of [68Ga]Ga-NOTA-insulin as it was observed in the AD case, suggesting nonfunctional IR in AD and the presence of an alternative insulin uptake route in the absence of a functional IR. The Gjedde-Patlak graphical analysis was also performed to predict the input rate of [68Ga]Ga-NOTA-insulin into the brain using MicroPET imaging data and supported the in vivo results. The [68Ga]Ga-NOTA-insulin PET probe was successfully synthesized and evaluated in a mouse model of AD in comparison with [18F]AV1451 and [11C]PIB to noninvasively study the role of insulin in AD pathophysiology.


Asunto(s)
Enfermedad de Alzheimer , Radioisótopos de Galio , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Compuestos Heterocíclicos con 1 Anillo , Insulina , Ratones , Tomografía de Emisión de Positrones/métodos , Receptor de Insulina
3.
J Vis Exp ; (180)2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35253798

RESUMEN

T cells genetically engineered to express chimeric antigen receptors (CAR) have shown unprecedented results in pivotal clinical trials for patients with B cell malignancies or multiple myeloma (MM). However, numerous obstacles limit the efficacy and prohibit the widespread use of CAR T cell therapies due to poor trafficking and infiltration into tumor sites as well as lack of persistence in vivo. Moreover, life-threatening toxicities, such as cytokine release syndrome or neurotoxicity, are major concerns. Efficient and sensitive imaging and tracking of CAR T cells enables the evaluation of T cell trafficking, expansion, and in vivo characterization and allows the development of strategies to overcome the current limitations of CAR T cell therapy. This paper describes the methodology for incorporating the sodium iodide symporter (NIS) in CAR T cells and for CAR T cell imaging using [18F]tetrafluoroborate-positron emission tomography ([18F]TFB-PET) in preclinical models. The methods described in this protocol can be applied to other CAR constructs and target genes in addition to the ones used for this study.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/terapia , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Linfocitos T
4.
Am J Nucl Med Mol Imaging ; 12(1): 15-24, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295887

RESUMEN

Due to the advent of various biologics like antibodies, proteins, cells, viruses, and extracellular vesicles as biomarkers for disease diagnosis, progression, and as therapeutics, there exists a need to have a simple and ready to use radiolabeling synthon to enable noninvasive imaging trafficking studies. Previously, we reported [89Zr]zirconium-p-isothiocyanatobenzyl-desferrioxamine ([89Zr]Zr-DBN) as a synthon for the radiolabeling of biologics to allow PET imaging of cell trafficking. In this study, we focused on improving the molar activity (Am) of [89Zr]Zr-DBN, by enhancing 89Zr production on a low-energy cyclotron and developing a new reverse phase HPLC method to purify [89Zr]Zr-DBN. To enhance 89Zr production, a new solid target was designed, and production yield was optimized by varying, thickness of yttrium foil, beam current, irradiation duration and proton beam energy. After optimization, 4.78±0.33 GBq (129.3±8.9 mCi) of 89Zr was produced at 40 µA for 180 min (3 h) proton irradiation decay corrected to the end of bombardment with a saturation yield of 4.56±0.31 MBq/µA. Additionally, after reverse phase HPLC purification the molar activity of [89Zr]Zr-DBN was found to be in 165-316 GBq/µmol range. The high molar activity of [89Zr]Zr-DBN also allowed radiolabeling of low concentration of proteins in relatively higher yield. The stability of [89Zr]Zr-DBN was measured over time with and without the presence of ascorbic acid. The newly designed solid target assembly and HPLC method of [89Zr]Zr-DBN purification can be adopted in the routine production of 89Zr and [89Zr]Zr-DBN, respectively.

6.
Cancer Immunol Res ; 9(9): 1035-1046, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244299

RESUMEN

Although chimeric antigen receptor T (CART)-cell therapy has been successful in treating certain hematologic malignancies, wider adoption of CART-cell therapy is limited because of minimal activity in solid tumors and development of life-threatening toxicities, including cytokine release syndrome (CRS). There is a lack of a robust, clinically relevant imaging platform to monitor in vivo expansion and trafficking to tumor sites. To address this, we utilized the sodium iodide symporter (NIS) as a platform to image and track CART cells. We engineered CD19-directed and B-cell maturation antigen (BCMA)-directed CART cells to express NIS (NIS+CART19 and NIS+BCMA-CART, respectively) and tested the sensitivity of 18F-TFB-PET to detect trafficking and expansion in systemic and localized tumor models and in a CART-cell toxicity model. NIS+CART19 and NIS+BCMA-CART cells were generated through dual transduction with two vectors and demonstrated exclusive 125I uptake in vitro. 18F-TFB-PET detected NIS+CART cells in vivo to a sensitivity level of 40,000 cells. 18F-TFB-PET confirmed NIS+BCMA-CART-cell trafficking to the tumor sites in localized and systemic tumor models. In a xenograft model for CART-cell toxicity, 18F-TFB-PET revealed significant systemic uptake, correlating with CART-cell in vivo expansion, cytokine production, and development of CRS-associated clinical symptoms. NIS provides a sensitive, clinically applicable platform for CART-cell imaging with PET scan. 18F-TFB-PET detected CART-cell trafficking to tumor sites and in vivo expansion, correlating with the development of clinical and laboratory markers of CRS. These studies demonstrate a noninvasive, clinically relevant method to assess CART-cell functions in vivo.


Asunto(s)
Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Simportadores/análisis , Animales , Antígenos CD19 , Modelos Animales de Enfermedad , Femenino , Humanos , Células K562 , Masculino , Neoplasias/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nucl Med Biol ; 100-101: 4-11, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34119742

RESUMEN

INTRODUCTION: Immunotherapy targeting PD-1/PD-L1 immune checkpoint inhibition (ICI) is efficacious in various solid and hematologic malignancies. However, the response rate to PD-1/PD-L1 therapy is only 15-35%. To obtain optimal clinical response to ICI therapies, a reliable assessment of tumor PD-L1 expression is needed to select appropriate patients, and a non-invasive imaging-based assessment of PD-L1 expression is critically needed. Although radiolabeled PET probes based on PD-L1 targeted therapeutic antibodies (e.g. atezolizumab) have shown encouraging results, there is concern that residual therapeutic antibody may compete for binding with the radiotracer thereby compromising imaging studies that follow treatment. METHODS AND RESULTS: In this study, we used novel anti-PD-L1-B11 clone antibody known to bind to a different epitope of PD-L1 than the therapeutic antibodies to avoid potential saturation effects. The anti-PD-L1-B11 clone was radiolabeled with zirconium-89 and evaluated to detect PD-L1 expression in various in vitro and in vivo cancer model systems in comparison with [89Zr]Zr-DFO-NCS-atezolizumab. In vitro binding parameters of anti-PD-L1-B11 were like those of atezolizumab. [89Zr]Zr-DFO-NCS-anti-PD-L1-B11 clone showed favorable properties to [89Zr]Zr-DFO-NCS-atezolizumab in an in vivo breast cancer tumor model system with higher uptake in PD-L1 expressing tumors. CONCLUSION: Our data demonstrates that [89Zr]Zr-DFO-NCS-anti-PD-L1-B11 exhibits excellent imaging properties for the assessment PD-L1 expression. The independent binding site of anti-PD-L1-B11 relative to therapeutic anti-PD-L1 antibodies may be advantageous for anti-PD-L1 therapy monitoring.


Asunto(s)
Antígeno B7-H1
8.
Front Mol Neurosci ; 14: 665686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33994944

RESUMEN

Metal ion dyshomeostasis and disparate levels of biometals like zinc (Zn), copper (Cu), and selenium (Se) have been implicated as a potential causative factor for Autism Spectrum Disorder (ASD). In this study, we have enrolled 129 children (aged 2-4 years) in North America, of which 64 children had a diagnosis of ASD and 65 were controls. Hair, nail, and blood samples were collected and quantitatively analyzed for Zn, Cu and Se using inductively coupled plasma mass spectrometry (ICP-MS). Of the analyzed biometals, serum Se (116.83 ± 14.84 mcg/mL) was found to be significantly lower in male ASD cases compared to male healthy controls (128.21 ± 9.11 mcg/mL; p < 0.005). A similar trend was found for nail Se levels in ASD (1.01 ± 0.15 mcg/mL) versus that of controls (1.11 ± 0.17 mcg/mL) with a p-value of 0.0132 using a stratified Wilcoxon rank sum testing. The level of Se in ASD cohort was co-analyzed for psychometric correlation and found a negative correlation between total ADOS score and serum Se levels. However, we did not observe any significant difference in Zn, Cu, and Zn/Cu ratio in ASD cases versus controls in this cohort of North American children. Further studies are recommended to better understand the biology of the relationship between Se and ASD status.

9.
Curr Radiopharm ; 14(4): 325-339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32867656

RESUMEN

The present review describes the methodological aspects and prospects of the production of Positron Emission Tomography (PET) radiometals in a liquid target using low-medium energy medical cyclotrons. The main objective of this review is to delineate and discuss the critical factors involved in the liquid target production of radiometals, including type of salt solution, solution composition, beam energy, beam current, the effect of irradiation duration (length of irradiation) and challenges posed by in-target chemistry in relation with irradiation parameters. We also summarize the optimal parameters for the production of various radiometals in liquid targets. Additionally, we discuss the future prospects of PET radiometals production in the liquid targets for academic research and clinical applications. Significant emphasis has been given to the production of 68Ga using liquid targets due to the growing demand for 68Ga labeled PSMA vectors, [68Ga]- Ga-DOTATATE, [68Ga]Ga-DOTANOC and some upcoming 68Ga labeled radiopharmaceuticals. Other PET radiometals included in the discussion are 86Y, 63Zn and 89Zr.


Asunto(s)
Ciclotrones , Radioisótopos de Galio/química , Tomografía de Emisión de Positrones , Radioquímica/métodos , Radioisótopos/química , Radiofármacos/síntesis química , Radioisótopos de Itrio/química , Radioisótopos de Zinc/química , Circonio/química
10.
Mol Ther Methods Clin Dev ; 18: 738-750, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32913881

RESUMEN

The effectiveness of cell-based therapies to treat liver failure is often limited by the diseased liver environment. Here, we provide preclinical proof of concept for hepatocyte transplantation into lymph nodes as a cure for liver failure in a large-animal model with hereditary tyrosinemia type 1 (HT1), a metabolic liver disease caused by deficiency of fumarylacetoacetate hydrolase (FAH) enzyme. Autologous porcine hepatocytes were transduced ex vivo with a lentiviral vector carrying the pig Fah gene and transplanted into mesenteric lymph nodes. Hepatocytes showed early (6 h) and durable (8 months) engraftment in lymph nodes, with reproduction of vascular and hepatic microarchitecture. Subsequently, hepatocytes migrated to and repopulated the native diseased liver. The corrected cells generated sufficient liver mass to clinically ameliorate the acute liver failure and HT1 disease as early as 97 days post-transplantation. Integration site analysis defined the corrected hepatocytes in the liver as a subpopulation of hepatocytes from lymph nodes, indicating that the lymph nodes served as a source for healthy hepatocytes to repopulate a diseased liver. Therefore, ectopic transplantation of healthy hepatocytes cures this pig model of liver failure and presents a promising approach for the development of cures for liver disease in patients.

11.
Nucl Med Biol ; 90-91: 23-30, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32957056

RESUMEN

INTRODUCTION: Radiolabeling of stem cells with a positron emitting radioisotope represents a major advancement in regenerative biotherapy enabling non-invasive imaging. To assess the value of such an approach in a clinically relevant scenario, the tolerability and therapeutic aptitude of [89Zr]zirconium-p-isothiocyanatobenzyl-desferrioxamine ([89Zr]Zr-DBN) labeled human cardiopoietic stem cells (CPs) were evaluated in a model of ischemic heart failure. METHODS AND RESULTS: [89Zr]Zr-DBN based radiolabeling of human CPs yielded [89Zr]Zr-DBN-CPs with radioactivity yield of 0.70 ± 0.20 MBq/106 cells and excellent label stability. Compared to unlabeled cell counterparts, [89Zr]Zr-DBN-CPs maintained morphology, viability, and proliferation capacity with characteristic expression of mesodermal and pro-cardiogenic transcription factors defining the cardiopoietic phenotype. Administered in chronically infarcted murine hearts, [89Zr]Zr-DBN-CPs salvaged cardiac pump failure, documented by improved left ventricular ejection fraction not inferior to unlabeled CPs and notably superior to infarcted hearts without cell treatment. CONCLUSION: The present study establishes that [89Zr]Zr-DBN labeling does not compromise stem cell identity or efficacy in the setting of heart failure, offering a non-invasive molecular imaging platform to monitor regenerative biotherapeutics post-transplantation.


Asunto(s)
Deferoxamina/análogos & derivados , Insuficiencia Cardíaca/patología , Isotiocianatos/química , Radioisótopos/química , Células Madre/metabolismo , Circonio/química , Animales , Deferoxamina/química , Ratones , Tomografía de Emisión de Positrones , Coloración y Etiquetado , Células Madre/patología , Volumen Sistólico
12.
Inorg Chem ; 59(17): 12025-12038, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32820888

RESUMEN

Four tris-bidentate catecholamide (CAM) ligands were synthesized, characterized, and evaluated as ligands for radiolabeling of gallium-68 for positron emission tomography (PET). Three of those ligands, 2,2-Glu-CAM, 3,3-Glu-CAM, and TREN-bisGlyGlu-CAM, incorporate ligand caps that contain a pendant carboxylic group for further conjugation to targeting moieties. The acyclic ligands all exhibited high (>80%) radiolabeling yields after short reaction times (<10 min) at room temperature, a distinct advantage over macrocyclic analogues that display slower kinetics. The stabilities of the four GaIII complexes are comparable to or higher than those of other acyclic ligands used for gallium-68 PET imaging, such as desferrioxamine, with pGa values ranging from 21 to >24, although the functionalizable ligands are less stable than the parent GaIII-TREN-CAM. In vivo imaging studies and ex vivo pharmacokinetic and biodistribution studies indicate that the parent [68Ga]Ga-TREN-CAM is stable in vivo but is rapidly cleared in <15 min, probably via a renal pathway. The rapid and mild radiolabeling conditions, high radiolabeling yields, and high stability in human serum (>95%) render TREN-bisGlyGlu-CAM a promising candidate for gallium-68 chelation.


Asunto(s)
Catecoles/química , Radioisótopos de Galio/química , Tomografía de Emisión de Positrones/métodos , Animales , Estabilidad de Medicamentos , Humanos , Marcaje Isotópico , Cinética , Ligandos , Ratones , Temperatura
13.
Cancer Gene Ther ; 27(3-4): 179-188, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30674994

RESUMEN

Noninvasive bioluminescence imaging (BLI) of luciferase-expressing tumor cells has advanced pre-clinical evaluation of cancer therapies. Yet despite its successes, BLI is limited by poor spatial resolution and signal penetration, making it unusable for deep tissue or large animal imaging and preventing precise anatomical localization or signal quantification. To refine pre-clinical BLI methods and circumvent these limitations, we compared and ultimately combined BLI with tomographic, quantitative imaging of the sodium iodide symporter (NIS). To this end, we generated tumor cell lines expressing luciferase, NIS, or both reporters, and established tumor models in mice. BLI provided sensitive early detection of tumors and relatively easy monitoring of disease progression. However, spatial resolution was poor, and as the tumors grew, deep thoracic tumor signals were massked by overwhelming surface signals from superficial tumors. In contrast, NIS-expressing tumors were readily distinguished and precisely localized at all tissue depths by positron emission tomography (PET) or single photon emission computed tomography (SPECT) imaging. Furthermore, radiotracer uptake for each tumor could be quantitated noninvasively. Ultimately, combining BLI and NIS imaging represented a significant enhancement over traditional BLI, providing more information about tumor size and location. This combined imaging approach should facilitate comprehensive evaluation of tumor responses to given therapies.


Asunto(s)
Luciferasas de Luciérnaga/genética , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen , Simportadores/genética , Animales , Benzotiazoles/administración & dosificación , Benzotiazoles/química , Benzotiazoles/metabolismo , Línea Celular Tumoral , Femenino , Genes Reporteros/genética , Humanos , Luciferasas de Luciérnaga/metabolismo , Mediciones Luminiscentes/métodos , Ratones , Neoplasias/patología , Neoplasias/terapia , Tomografía de Emisión de Positrones/métodos , Radiofármacos/administración & dosificación , Radiofármacos/farmacocinética , Pertecnetato de Sodio Tc 99m/administración & dosificación , Pertecnetato de Sodio Tc 99m/farmacocinética , Simportadores/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Nucl Med Biol ; 80-81: 13-23, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31759313

RESUMEN

OBJECTIVE: The objectives of the present work were to optimize and validate the synthesis and stability of 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid ([18F]FTHA) and 16-[18F]fluoro-4-thia-palmitic acid ([18F]FTP) under cGMP conditions for clinical applications. METHODS: Benzyl-14-(R,S)-tosyloxy-6-thiaheptadecanoate and methyl 16-bromo-4-thia-palmitate were used as precursors for the synthesis of [18F]FTHA and [18F]FTP, respectively. For comparison, a fatty acid analog lacking a thia-substitution, 16-[18F]fluoro-palmitic acid ([18F]FP), was synthesized from the precursor methyl 16-bromo-palmitate. A standard nucleophilic reaction using cryptand (Kryptofix/K222, 8.1 mg), potassium carbonate (K2CO3, 4.0 mg) and 18F-fluoride were employed for the 18F-labeling and potassium hydroxide (0.8 M) was used for the post-labeling ester hydrolysis. The final products were purified via reverse phase semi-preparative HPLC and concentrated via trap and release on a C-18 plus solid phase extraction cartridge. The radiochemical purities of the [18F]fluorothia fatty acids and [18F]FP were examined over a period of 4 h post-synthesis using an analytical HPLC. All the syntheses were optimized in an automated TRACERlab FX-N Pro synthesizer. Liquid chromatography mass spectrometry (LCMS) and high resolution mass spectrometry (HRMS) was employed to study the identity and nature of side products formed during radiosynthesis and as a consequence of post-synthesis radiation induced oxidation. RESULTS: Radiosyntheses of [18F]FTHA, [18F]FTP and [18F]FP were achieved in moderate (8-20% uncorrected) yields. However, it was observed that the HPLC-purified [18F]fluorothia fatty acids, [18F]FTHA and [18F]FTP at higher radioactivity concentrations (>1.11 GBq/mL, 30 mCi/mL) underwent formation of 18F-labeled side products over time but [18F]FP (lacking a sulfur heteroatom) remained stable up to 4 h post-synthesis. Various radiation protectors like ethanol and ascorbic acid were examined to minimize the formation of side products formed during [18F]FTHA and [18F]FTP synthesis but showed only limited to no effect. Analysis of the side products by LCMS showed formation of sulfoxides of both [18F]FTHA and [18F]FTP. The identity of the sulfoxide side product was further confirmed by synthesizing a non-radioactive reference standard of the sulfoxide analog of FTP and matching retention times on HPLC and molecular ion peaks on LC/HRMS. Radiation-induced oxidation of the sulfur heteroatom was mitigated by dilution of product with isotonic saline to reduce the radioactivity concentration to <0.518 GBq/mL (14 mCi/mL). CONCLUSIONS: Successful automated synthesis of [18F]fluorothia fatty acids were carried out in cGMP facility for their routine production and clinical applications. Instability of [18F]fluorothia fatty acids were observed at radioactivity concentrations exceeding 1.11 GBq/mL (30 mCi/mL) but mitigated through dilution of the product to <0.518 GBq/mL (14 mCi/mL). The identities of the side products formed were established as the sulfoxides of the respective thia fatty acids caused by radiation-induced oxidation of the sulfur heteroatom.


Asunto(s)
Ácidos Grasos/química , Radioisótopos de Flúor/química , Radioquímica/métodos , Oxidación-Reducción
15.
Nucl Med Biol ; 74-75: 49-55, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31085059

RESUMEN

OBJECTIVES: To optimize 68Ga production using a liquid cyclotron target, investigations were performed to compare production yields using different concentrations of [68Zn]Zn(NO3)2, nitric acid, and irradiation parameters. METHODS: Different concentrations of [68Zn]Zn(NO3)2 (0.6 M, 1.2 M and 1.42 M) in varying normality of nitric acid (0.8-1.5 N) were prepared and irradiated with protons (incident energy ~14 MeV) using a BMLT-2 liquid target at different beam currents (30-50 µA) and irradiation times (30-60 min). The 68Ga production and saturation yields were calculated and compared. [68Ga]GaCl3 was isolated using in-house developed hydroxamate resin and optimized for routine application. Recycling of [68Zn]Zn(NO3)2 from the recovered target solution was also investigated. RESULTS: On increasing concentration of [68Zn]Zn(NO3)2 from 0.6 M to 1.2 M in 0.8 N nitric acid, decay corrected yield of 68Ga at EOB was found to be 1.64 GBq (44.4 mCi) and 3.37 GBq (91.0 mCi), respectively at 30 µA beam current, indicating production yield was proportional to zinc nitrate concentration for a 30 min irradiation. However, when beam current was increased to 40 µA while maintaining nitric acid concentration at 0.8 N, the proportional relationship of 68Zn-concentration with 68Ga production yield was lost [0.6 M, 2.29 GBq (61.9 mCi); 1.2 M, 3.6 GBq (97.3 mCi)] for a 30 min irradiation. In fact, the effect was more profound for 60 min irradiations [0.6 M, 2.96 GBq (80.0 mCi); 1.2 M, 4.25 GBq (115 mCi)]. Increasing nitric acid concentration to 1.25-1.5 N improved 68Ga production yield for 40 µA, 60-min irradiations (1.2 M; 5.17 GBq (140 mCi)). MP-AES analysis showed metal impurities as <0.20 µg Ga (n = 3), <0.93 µg Zn (n = 3) and < 2.7 µg Fe (n = 3). Based on above finding, 1.42 M [68Zn]Zn(NO3)2 in 1.2 N-HNO3 solutions were also studied to achieve highest production yields of 9.85 ±â€¯2.09 GBq (266 ±â€¯57 mCi) for 60 min irradiation at 40 µA beam current. After recycling,> 99% pure recycled [68Zn]zinc nitrate was obtained in 82.6 ±â€¯13.6% yield. CONCLUSIONS: 68Ga production yields were dependent on all four variables: concentrations of [68Zn]Zn(NO3)2 and nitric acid, beam current and duration of irradiation. Of note, increasing beam current and irradiation time may require increased concentrations of nitric acid to achieve expected increments in 68Ga production yield.


Asunto(s)
Ciclotrones/instrumentación , Radioisótopos de Galio/metabolismo , Nitratos/química , Radioquímica , Radiofármacos/metabolismo , Compuestos de Zinc/química , Galio/química , Radioisótopos de Galio/química , Radioisótopos de Galio/aislamiento & purificación , Humanos , Ácidos Hidroxámicos/química , Marcaje Isotópico/métodos , Tomografía de Emisión de Positrones , Protones , Radiofármacos/aislamiento & purificación
16.
Am J Physiol Renal Physiol ; 316(2): F263-F273, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30520657

RESUMEN

Zinc (Zn2+) is the second most abundant trace element, but is considered a micronutrient, as it is a cofactor for many enzymes and transcription factors. Whereas Zn2+ deficiency can cause cognitive immune or metabolic dysfunction and infertility, excess Zn2+ is nephrotoxic. As for other ions and solutes, Zn2+ is moved into and out of cells by specific membrane transporters: ZnT, Zip, and NRAMP/DMT proteins. ZIP10 is reported to be localized at the apical membrane of renal proximal tubules in rats, where it is believed to play a role in Zn2+ import. Renal regulation of Zn2+ is of particular interest in light of growing evidence that Zn2+ may play a role in kidney stone formation. The objective of this study was to show that ZIP10 homologs transport Zn2+, as well as ZIP10, kidney localization across species. We cloned ZIP10 from dog, human, and Drosophila ( CG10006), tested clones for Zn2+ uptake in Xenopus oocytes and localized the protein in renal structures. CG10006, rather than foi (fear-of-intimacy, CG6817) is the primary ZIP10 homolog found in Drosophila Malpighian tubules. The ZIP10 antibody recognizes recombinant dog, human, and Drosophila ZIP10 proteins. Immunohistochemistry reveals that ZIP10 in higher mammals is found not only in the proximal tubule, but also in the collecting duct system. These ZIP10 proteins show Zn2+ transport. Together, these studies reveal ZIP10 kidney localization, a role in renal Zn2+ transport, and indicates that CG10006 is a Drosophila homolog of ZIP10.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Clonación Molecular , Proteínas de Drosophila/metabolismo , Túbulos Renales Colectores/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos de Malpighi/metabolismo , Zinc/metabolismo , Animales , Transporte Biológico , Proteínas de Transporte de Catión/genética , Perros , Proteínas de Drosophila/genética , Humanos , Especificidad de la Especie , Xenopus laevis
17.
Am J Physiol Endocrinol Metab ; 316(2): E251-E259, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30512988

RESUMEN

The ability of heart and skeletal muscle (SM) to switch between fat and carbohydrate oxidation is of high interest in the study of metabolic diseases and exercise physiology. Positron emission tomography (PET) imaging with the glucose analog 2-[18F]fluoro-2-deoxy-glucose (18F-FDG) provides a noninvasive means to quantitate glucose metabolic rates. However, evaluation of fatty acid oxidation (FAO) rates by PET has been limited by the lack of a suitable FAO probe. We have developed a metabolically trapped oleate analog, ( Z)-18-[18F]fluoro-4-thia-octadec-9-enoate (18F-FTO), and investigated the feasibility of using 18F-FTO and 18F-FDG to measure FAO and glucose uptake, respectively, in heart and SM of rats in vivo. To enhance the metabolic rates in SM, the vastus lateralis (VL) muscle was electrically stimulated in fasted rats for 30 min before and 30 min following radiotracer injection. The responses of radiotracer uptake patterns to pharmacological inhibition of FAO were assessed by pretreatment of the rats with the carnitine palmitoyl-transferase-1 (CPT-1) inhibitor sodium 2-[5-(4-chlorophenyl)-pentyl]oxirane-2-carboxylate (POCA). Small-animal PET images and biodistribution data with 18F-FTO and 18F-FDG demonstrated profound metabolic switching for energy provision in the myocardium from exogenous fatty acids to glucose in control and CPT-1-inhibited rats, respectively. Uptake of both radiotracers was low in unstimulated SM. In stimulated VL muscle, 18F-FTO and 18F-FDG uptakes were increased 4.4- and 28-fold, respectively, and CPT-1 inhibition only affected 18F-FTO uptake (66% decrease). 18F-FTO is a FAO-dependent PET probe that may allow assessment of energy substrate metabolic switching in conjunction with 18F-FDG and other metabolic probes.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/metabolismo , Corazón/diagnóstico por imagen , Miocardio/metabolismo , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/metabolismo , Animales , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Compuestos Epoxi/farmacología , Fluorodesoxiglucosa F18 , Ácido Láctico/metabolismo , Contracción Muscular , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Ácidos Oléicos , Oxidación-Reducción , Tomografía Computarizada por Tomografía de Emisión de Positrones , Músculo Cuádriceps/efectos de los fármacos , Radiofármacos , Ratas , Sulfuros , Distribución Tisular , Triglicéridos/metabolismo
18.
Mol Ther Oncolytics ; 15: 178-185, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31890867

RESUMEN

Noninvasive dual-imaging methods that provide an early readout on tumor permissiveness to virus infection and tumor cell death could be valuable in optimizing development of oncolytic virotherapies. Here, we have used the sodium iodide symporter (NIS) and 125I radiotracer to detect infection and replicative spread of an oncolytic vesicular stomatitis virus (VSV) in VSV-susceptible (MPC-11 tumor) versus VSV-resistant (CT26 tumor) tumors in BALB/c mice. In conjunction, tumor cell death was imaged simultaneously using technetium (99mTc)-duramycin that binds phosphatidylethanolamine in apoptotic and necrotic cells. Dual-isotope single-photon emission computed tomography/computed tomography (SPECT/CT) imaging showed areas of virus infection (NIS and 125I), which overlapped well with areas of tumor cell death (99mTc-duramycin imaging) in susceptible tumors. Multiple infectious foci arose early in MPC-11 tumors, which rapidly expanded throughout the tumor parenchyma over time. There was a dose-dependent increase in numbers of infectious centers and 99mTc-duramycin-positive areas with viral dose. In contrast, NIS or duramycin signals were minimal in VSV-resistant CT26 tumors. Combinatorial use of NIS and 99mTc-duramycin SPECT imaging for simultaneous monitoring of oncolytic virotherapy (OV) spread and the presence or absence of treatment-associated cell death could be useful to guide development of combination treatment strategies to enhance therapeutic outcome.

19.
Sci Rep ; 8(1): 14209, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242176

RESUMEN

Fibrogenesis is the underlying mechanism of wound healing and repair. Animal models that enable longitudinal monitoring of fibrogenesis are needed to improve traditional tissue analysis post-mortem. Here, we generated transgenic reporter rats expressing the sodium iodide symporter (NIS) driven by the rat collagen type-1 alpha-1 (Col1α1) promoter and demonstrated that fibrogenesis can be visualized over time using SPECT or PET imaging following activation of NIS expression by rotator cuff (RC) injury. Radiotracer uptake was first detected in and around the injury site day 3 following surgery, increasing through day 7-14, and declining by day 21, revealing for the first time, the kinetics of Col1α1 promoter activity in situ. Differences in the intensity and duration of NIS expression/collagen promoter activation between individual RC injured Col1α1-hNIS rats were evident. Dexamethasone treatment delayed time to peak NIS signals, showing that modulation of fibrogenesis by a steroid can be imaged with exquisite sensitivity and resolution in living animals. NIS reporter rats would facilitate studies in physiological wound repair and pathological processes such as fibrosis and the development of anti-fibrotic drugs.


Asunto(s)
Genes Reporteros/genética , Simportadores/genética , Animales , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , ADN Complementario/genética , Femenino , Fibrosis/genética , Humanos , Tomografía de Emisión de Positrones/métodos , Regiones Promotoras Genéticas/genética , Ratas , Ratas Transgénicas , Tomografía Computarizada de Emisión de Fotón Único/métodos , Cicatrización de Heridas/genética
20.
Theranostics ; 8(14): 3918-3931, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083270

RESUMEN

Sodium/iodide symporter (NIS)-mediated iodide uptake in thyroid follicular cells is the basis of clinical utilization of radioiodines. The cloning of the NIS gene enabled applications of NIS as a reporter gene in both preclinical and translational research. Non-invasive NIS imaging with radioactive iodides and iodide analogs has gained much interest in recent years for evaluation of thyroid cancer and NIS reporter expression. Although radioiodines and [99mTc]pertechnetate ([99mTc]TcO4-) have been utilized in positron emission tomography (PET) and single photon emission computed tomography (SPECT), they may suffer from limitations of availability, undesirable decay properties or imaging sensitivity (SPECT versus PET). Recently, [18F]tetrafluoroborate ([18F]TFB or [18F]BF4-) and other fluorine-18 labeled iodide analogs have emerged as a promising iodide analog for PET imaging. These fluorine-18 labeled probes have practical radiosyntheses and biochemical properties that allow them to closely mimic iodide transport by NIS in thyroid, as well as in other NIS-expressing tissues. Unlike radioiodides, they do not undergo organification in thyroid cells, which results in an advantage of relatively lower uptake in normal thyroid tissue. Initial clinical trials of [18F]TFB have been completed in healthy human subjects and thyroid cancer patients. The excellent imaging properties of [18F]TFB for evaluation of NIS-expressing tissues indicate its bright future in PET NIS imaging. This review focuses on the recent evolution of [18F]TFB and other iodide analogs and their potential value in research and clinical practice.


Asunto(s)
Boratos/metabolismo , Radioisótopos de Flúor/metabolismo , Tomografía de Emisión de Positrones/métodos , Coloración y Etiquetado/métodos , Simportadores/análisis , Células Epiteliales Tiroideas/metabolismo , Humanos , Yoduros/metabolismo , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...