Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 34(9): 1071-1083, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33856230

RESUMEN

Plants are continuously exposed to beneficial and pathogenic microbes, but how plants recognize and respond to friends versus foes remains poorly understood. Here, we compared the molecular response of Arabidopsis thaliana independently challenged with a Fusarium oxysporum endophyte Fo47 versus a pathogen Fo5176. These two F. oxysporum strains share a core genome of about 46 Mb, in addition to 1,229 and 5,415 unique accessory genes. Metatranscriptomic data reveal a shared pattern of expression for most plant genes (about 80%) in responding to both fungal inoculums at all timepoints from 12 to 96 h postinoculation (HPI). However, the distinct responding genes depict transcriptional plasticity, as the pathogenic interaction activates plant stress responses and suppresses functions related to plant growth and development, while the endophytic interaction attenuates host immunity but activates plant nitrogen assimilation. The differences in reprogramming of the plant transcriptome are most obvious in 12 HPI, the earliest timepoint sampled, and are linked to accessory genes in both fungal genomes. Collectively, our results indicate that the A. thaliana and F. oxysporum interaction displays both transcriptome conservation and plasticity in the early stages of infection, providing insights into the fine-tuning of gene regulation underlying plant differential responses to fungal endophytes and pathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Arabidopsis , Fusarium , Arabidopsis/genética , Endófitos/genética , Fusarium/genética , Genoma Fúngico , Enfermedades de las Plantas
2.
Commun Biol ; 3(1): 50, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005944

RESUMEN

Fusarium oxysporum is a cross-kingdom fungal pathogen that infects plants and humans. Horizontally transferred lineage-specific (LS) chromosomes were reported to determine host-specific pathogenicity among phytopathogenic F. oxysporum. However, the existence and functional importance of LS chromosomes among human pathogenic isolates are unknown. Here we report four unique LS chromosomes in a human pathogenic strain NRRL 32931, isolated from a leukemia patient. These LS chromosomes were devoid of housekeeping genes, but were significantly enriched in genes encoding metal ion transporters and cation transporters. Homologs of NRRL 32931 LS genes, including a homolog of ceruloplasmin and the genes that contribute to the expansion of the alkaline pH-responsive transcription factor PacC/Rim1p, were also present in the genome of NRRL 47514, a strain associated with Fusarium keratitis outbreak. This study provides the first evidence, to our knowledge, for genomic compartmentalization in two human pathogenic fungal genomes and suggests an important role of LS chromosomes in niche adaptation.


Asunto(s)
Cromosomas Fúngicos , Fusariosis/microbiología , Fusarium/genética , Genoma Fúngico , Infecciones Oportunistas/microbiología , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fusarium/aislamiento & purificación , Regulación Fúngica de la Expresión Génica , Humanos , Modelos Moleculares , Filogenia , Conformación Proteica , Relación Estructura-Actividad
3.
mSphere ; 3(3)2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29898984

RESUMEN

The Fusarium oxysporum species complex (FOSC) is a group of soilborne pathogens causing severe disease in more than 100 plant hosts, while individual strains exhibit strong host specificity. Both chromosome transfer and comparative genomics experiments have demonstrated that lineage-specific (LS) chromosomes contribute to the host-specific pathogenicity. However, little is known about the functional importance of genes encoded in these LS chromosomes. Focusing on signaling transduction, this study compared the kinomes of 12 F. oxysporum isolates, including both plant and human pathogens and 1 nonpathogenic biocontrol strain, with 7 additional publicly available ascomycete genomes. Overall, F. oxysporum kinomes are the largest, facilitated in part by the acquisitions of the LS chromosomes. The comparative study identified 99 kinases that are present in almost all examined fungal genomes, forming the core signaling network of ascomycete fungi. Compared to the conserved ascomycete kinome, the expansion of the F. oxysporum kinome occurs in several kinase families such as histidine kinases that are involved in environmental signal sensing and target of rapamycin (TOR) kinase that mediates cellular responses. Comparative kinome analysis suggests a convergent evolution that shapes individual F. oxysporum isolates with an enhanced and unique capacity for environmental perception and associated downstream responses.IMPORTANCE Isolates of Fusarium oxysporum are adapted to survive a wide range of host and nonhost conditions. In addition, F. oxysporum was recently recognized as the top emerging opportunistic fungal pathogen infecting immunocompromised humans. The sensory and response networks of these fungi undoubtedly play a fundamental role in establishing the adaptability of this group. We have examined the kinomes of 12 F. oxysporum isolates and highlighted kinase families that distinguish F. oxysporum from other fungi, as well as different isolates from one another. The amplification of kinases involved in environmental signal relay and regulating downstream cellular responses clearly sets Fusarium apart from other Ascomycetes Although the functions of many of these kinases are still unclear, their specific proliferation highlights them as a result of the evolutionary forces that have shaped this species complex and clearly marks them as targets for exploitation in order to combat disease.


Asunto(s)
Cromosomas Fúngicos , Fusarium/enzimología , Fusarium/genética , Interacciones Huésped-Patógeno , Proteínas Quinasas/genética , Adaptación Biológica , Evolución Molecular , Fusariosis/microbiología , Especificidad del Huésped , Humanos , Fosforilación , Enfermedades de las Plantas/microbiología , Plantas , Procesamiento Proteico-Postraduccional , Transducción de Señal
4.
Plant Genome ; 9(2)2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27898828

RESUMEN

The small, annual grass (L.) Beauv., a close relative of wheat ( L.) and barley ( L.), is a powerful model system for cereals and bioenergy grasses. Genome-wide association studies (GWAS) of natural variation can elucidate the genetic basis of complex traits but have been so far limited in by the lack of large numbers of well-characterized and sufficiently diverse accessions. Here, we report on genotyping-by-sequencing (GBS) of 84 , seven , and three accessions with diverse geographic origins including Albania, Armenia, Georgia, Italy, Spain, and Turkey. Over 90,000 high-quality single-nucleotide polymorphisms (SNPs) distributed across the Bd21 reference genome were identified. Our results confirm the hybrid nature of the genome, which appears as a mosaic of -like and -like sequences. Analysis of more than 50,000 SNPs for the accessions revealed three distinct, genetically defined populations. Surprisingly, these genomic profiles are associated with differences in flowering time rather than with broad geographic origin. High levels of differentiation in loci associated with floral development support the differences in flowering phenology between populations. Genome-wide association studies combining genotypic and phenotypic data also suggest the presence of one or more photoperiodism, circadian clock, and vernalization genes in loci associated with flowering time variation within populations. Our characterization elucidates genes underlying population differences, expands the germplasm resources available for , and illustrates the feasibility and limitations of GWAS in this model grass.


Asunto(s)
Variación Genética , Poaceae/clasificación , Poaceae/genética , Europa (Continente) , Flores/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Turquía
5.
Infect Immun ; 81(12): 4490-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24082070

RESUMEN

B cell activating factor of the tumor necrosis factor family (BAFF) is an essential survival factor for B cells and has been shown to regulate T cell-independent (TI) IgM production. During Ehrlichia muris infection, TI IgM secretion in the spleen was BAFF dependent, and antibody-mediated BAFF neutralization led to an impairment of IgM-mediated host defense. The failure of TI plasmablasts to secrete IgM was not a consequence of alterations in their generation, survival, or early differentiation, since all occurred normally in infected mice following BAFF neutralization. Gene expression characteristic of plasma cell differentiation was also unaffected by BAFF neutralization in vivo, and except for CD138, plasmablast cell surface marker expression was unaffected. IgM was produced, since it was detected intracellularly, and impaired secretion was not due to a failure to express the IgM secretory exon. Addition of BAFF to plasmablasts in vitro rescued IgM secretion, suggesting that BAFF signaling can directly regulate secretory processes. Our findings indicate that BAFF signaling can modulate TI host defense by acting at a late stage in B cell differentiation, via its regulation of terminal plasmablast differentiation and/or IgM secretion.


Asunto(s)
Factor Activador de Células B/inmunología , Linfocitos B/inmunología , Ehrlichia/inmunología , Ehrlichiosis/inmunología , Inmunoglobulina M/inmunología , Animales , Factor Activador de Células B/antagonistas & inhibidores , Factor Activador de Células B/metabolismo , Diferenciación Celular , Inmunoglobulina M/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Transducción de Señal/inmunología , Sindecano-1/inmunología , Linfocitos T/inmunología
6.
J Immunol ; 189(3): 1440-7, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22730531

RESUMEN

Polyreactivity is well known as a property of natural IgM produced by B-1 cells. We demonstrate that polyreactive IgM is also generated during infection of mice with Ehrlichia muris, a tick-borne intracellular bacterial pathogen. The polyreactive IgM bound self and foreign Ags, including single-stranded and double-stranded DNA, insulin, thyroglobulin, LPS, influenza virus, and Borrelia burgdorferi. Production of polyreactive IgM during infection was Ag driven, not due to polyclonal B cell activation, as the majority of polyreactive IgM recognized ehrlichial Ag(s), including an immunodominant outer membrane protein. Monoclonal polyreactive IgM derived from T cell-independent spleen plasmablasts, which was germline-encoded, also bound cytoplasmic and nuclear Ags in HEp-2 cells. Polyreactive IgM protected immunocompromised mice against lethal bacterial challenge infection. Serum from human ehrlichiosis patients also contained polyreactive and self-reactive IgM. We propose that polyreactivity increases IgM efficacy during infection but may also exacerbate or mollify the response to foreign and self Ags.


Asunto(s)
Antígenos Bacterianos/inmunología , Inmunoglobulina M/biosíntesis , Líquido Intracelular/inmunología , Líquido Intracelular/microbiología , Animales , Antígenos T-Independientes/inmunología , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Ehrlichia/inmunología , Ehrlichiosis/sangre , Ehrlichiosis/inmunología , Ehrlichiosis/metabolismo , Epítopos Inmunodominantes/inmunología , Líquido Intracelular/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Bazo/inmunología , Bazo/metabolismo , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...