Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 37(3): 109829, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686349

RESUMEN

Pseudomonas aeruginosa notoriously adapts to the airways of people with cystic fibrosis (CF), yet how infection-site biogeography and associated evolutionary processes vary as lifelong infections progress remains unclear. Here we test the hypothesis that early adaptations promoting aggregation influence evolutionary-genetic trajectories by examining longitudinal P. aeruginosa from the sinuses of six adults with CF. Highly host-adapted lineages harbored mutator genotypes displaying signatures of early genome degradation associated with recent host restriction. Using an advanced imaging technique (MiPACT-HCR [microbial identification after passive clarity technique]), we find population structure tracks with genome degradation, with the most host-adapted, genome-degraded P. aeruginosa (the mutators) residing in small, sparse aggregates. We propose that following initial adaptive evolution in larger populations under strong selection for aggregation, P. aeruginosa persists in small, fragmented populations that experience stronger effects of genetic drift. These conditions enrich for mutators and promote degenerative genome evolution. Our findings underscore the importance of infection-site biogeography to pathogen evolution.


Asunto(s)
Fibrosis Quística/microbiología , Evolución Molecular , Genoma Bacteriano , Mutación , Senos Paranasales/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Adulto , Línea Celular , Fibrosis Quística/diagnóstico , Femenino , Flujo Genético , Genotipo , Humanos , Estudios Longitudinales , Masculino , Fenotipo , Filogenia , Estudios Prospectivos , Infecciones por Pseudomonas/diagnóstico , Pseudomonas aeruginosa/crecimiento & desarrollo
2.
mBio ; 12(5): e0176321, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34544277

RESUMEN

A recent workshop titled "Developing Models to Study Polymicrobial Infections," sponsored by the Dartmouth Cystic Fibrosis Center (DartCF), explored the development of new models to study the polymicrobial infections associated with the airways of persons with cystic fibrosis (CF). The workshop gathered 35+ investigators over two virtual sessions. Here, we present the findings of this workshop, summarize some of the challenges involved with developing such models, and suggest three frameworks to tackle this complex problem. The frameworks proposed here, we believe, could be generally useful in developing new model systems for other infectious diseases. Developing and validating new approaches to study the complex polymicrobial communities in the CF airway could open windows to new therapeutics to treat these recalcitrant infections, as well as uncovering organizing principles applicable to chronic polymicrobial infections more generally.


Asunto(s)
Coinfección/complicaciones , Fibrosis Quística/complicaciones , Modelos Biológicos , Infección Persistente/complicaciones , Animales , Biopelículas , Humanos , Interacciones Microbianas , Sistema Respiratorio/microbiología
3.
PLoS Pathog ; 17(1): e1009252, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513208

RESUMEN

Neonatal echovirus infections are characterized by severe hepatitis and neurological complications that can be fatal. Here, we show that expression of the human homologue of the neonatal Fc receptor (hFcRn), the primary receptor for echoviruses, and ablation of type I interferon (IFN) signaling are key host determinants involved in echovirus pathogenesis. We show that expression of hFcRn alone is insufficient to confer susceptibility to echovirus infections in mice. However, expression of hFcRn in mice deficient in type I interferon (IFN) signaling, hFcRn-IFNAR-/-, recapitulate the echovirus pathogenesis observed in humans. Luminex-based multianalyte profiling from E11 infected hFcRn-IFNAR-/- mice revealed a robust systemic immune response to infection, including the induction of type I IFNs. Furthermore, similar to the severe hepatitis observed in humans, E11 infection in hFcRn-IFNAR-/- mice caused profound liver damage. Our findings define the host factors involved in echovirus pathogenesis and establish in vivo models that recapitulate echovirus disease in humans.


Asunto(s)
Enterovirus Humano B/patogenicidad , Infecciones por Enterovirus/virología , Genoma Viral/genética , Hepatitis/virología , Antígenos de Histocompatibilidad Clase I/metabolismo , Interferón Tipo I/metabolismo , Receptores Fc/metabolismo , Transducción de Señal , Animales , Enterovirus Humano B/genética , Infecciones por Enterovirus/inmunología , Femenino , Expresión Génica , Hepatitis/inmunología , Hepatocitos/inmunología , Hepatocitos/virología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunidad , Hígado/inmunología , Hígado/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Fc/genética
4.
mBio ; 10(4)2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409683

RESUMEN

Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens that colonize household water systems and cause chronic lung infections in susceptible patients. The ability of NTM to form surface-attached biofilms in the nonhost environment and corded aggregates in vivo is important to their ability to persist in both contexts. Underlying the development of these multicellular structures is the capacity of mycobacterial cells to adhere to one another. Unlike most other bacteria, NTM spontaneously and constitutively aggregate in vitro, hindering our ability to understand the transition between planktonic and aggregated cells. While culturing a model NTM, Mycobacterium smegmatis, in rich medium, we fortuitously discovered that planktonic cells accumulate after ∼3 days of growth. By providing selective pressure for bacteria that disperse earlier, we isolated a strain with two mutations in the oligopeptide permease operon (opp). A mutant lacking the opp operon (Δopp) disperses earlier than wild type (WT) due to a defect in nutrient uptake. Experiments with WT M. smegmatis revealed that growth as aggregates is favored when carbon is replete, but under conditions of low available carbon relative to available nitrogen, M. smegmatis grows as planktonic cells. By adjusting carbon and nitrogen sources in defined medium, we tuned the cellular C/N ratio such that M. smegmatis grows either as aggregates or as planktonic cells. C/N-mediated aggregation regulation is widespread among NTM with the possible exception of rough-colony Mycobacterium abscessus isolates. Altogether, we show that NTM aggregation is a controlled process that is governed by the relative availability of carbon and nitrogen for metabolism.IMPORTANCE Free-living bacteria can assemble into multicellular structures called biofilms. Biofilms help bacteria tolerate multiple stresses, including antibiotics and the host immune system. Nontuberculous mycobacteria are a group of emerging opportunistic pathogens that utilize biofilms to adhere to household plumbing and showerheads and to avoid phagocytosis by host immune cells. Typically, bacteria regulate biofilm formation by controlling expression of adhesive structures to attach to surfaces and other bacterial cells. Mycobacteria harbor a unique cell wall built chiefly of long-chain mycolic acids that confers hydrophobicity and has been thought to cause constitutive aggregation in liquid media. Here we show that aggregation is instead a regulated process dictated by the balance of available carbon and nitrogen. Understanding that mycobacteria utilize metabolic cues to regulate the transition between planktonic and aggregated cells reveals an inroad to controlling biofilm formation through targeted therapeutics.


Asunto(s)
Adhesión Bacteriana , Carbono/metabolismo , Nitrógeno/metabolismo , Micobacterias no Tuberculosas/fisiología , Adhesión Bacteriana/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Medios de Cultivo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/fisiología , Micobacterias no Tuberculosas/crecimiento & desarrollo , Micobacterias no Tuberculosas/metabolismo , Operón
5.
mBio ; 7(5)2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27677788

RESUMEN

Physiological resistance to antibiotics confounds the treatment of many chronic bacterial infections, motivating researchers to identify novel therapeutic approaches. To do this effectively, an understanding of how microbes survive in vivo is needed. Though much can be inferred from bulk approaches to characterizing complex environments, essential information can be lost if spatial organization is not preserved. Here, we introduce a tissue-clearing technique, termed MiPACT, designed to retain and visualize bacteria with associated proteins and nucleic acids in situ on various spatial scales. By coupling MiPACT with hybridization chain reaction (HCR) to detect rRNA in sputum samples from cystic fibrosis (CF) patients, we demonstrate its ability to survey thousands of bacteria (or bacterial aggregates) over millimeter scales and quantify aggregation of individual species in polymicrobial communities. By analyzing aggregation patterns of four prominent CF pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus sp., and Achromobacter xylosoxidans, we demonstrate a spectrum of aggregation states: from mostly single cells (A. xylosoxidans), to medium-sized clusters (S. aureus), to a mixture of single cells and large aggregates (P. aeruginosa and Streptococcus sp.). Furthermore, MiPACT-HCR revealed an intimate interaction between Streptococcus sp. and specific host cells. Lastly, by comparing standard rRNA fluorescence in situ hybridization signals to those from HCR, we found that different populations of S. aureus and A. xylosoxidans grow slowly overall yet exhibit growth rate heterogeneity over hundreds of microns. These results demonstrate the utility of MiPACT-HCR to directly capture the spatial organization and metabolic activity of bacteria in complex systems, such as human sputum. IMPORTANCE: The advent of metagenomic and metatranscriptomic analyses has improved our understanding of microbial communities by empowering us to identify bacteria, calculate their abundance, and profile gene expression patterns in complex environments. We are still technologically limited, however, in regards to the many questions that bulk measurements cannot answer, specifically in assessing the spatial organization of microbe-microbe and microbe-host interactions. Here, we demonstrate the power of an enhanced optical clearing method, MiPACT, to survey important aspects of bacterial physiology (aggregation, host interactions, and growth rate), in situ, with preserved spatial information when coupled to rRNA detection by HCR. Our application of MiPACT-HCR to cystic fibrosis patient sputum revealed species-specific aggregation patterns, yet slow growth characterized the vast majority of bacterial cells regardless of their cell type. More broadly, MiPACT, coupled with fluorescent labeling, promises to advance the direct study of microbial communities in diverse environments, including microbial habitats within mammalian systems.

6.
Microbiol Spectr ; 3(3)2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26185090

RESUMEN

Escherichia coli is one of the world's best-characterized organisms, because it has been extensively studied for over a century. However, most of this work has focused on E. coli grown under laboratory conditions that do not faithfully simulate its natural environments. Therefore, the historical perspectives on E. coli physiology and life cycle are somewhat skewed toward experimental systems that feature E. coli growing logarithmically in a test tube. Typically a commensal bacterium, E. coli resides in the lower intestines of a slew of animals. Outside of the lower intestine, E. coli can adapt and survive in a very different set of environmental conditions. Biofilm formation allows E. coli to survive, and even thrive, in environments that do not support the growth of planktonic populations. E. coli can form biofilms virtually everywhere: in the bladder during a urinary tract infection, on in-dwelling medical devices, and outside of the host on plants and in the soil. The E. coli extracellular matrix (ECM), primarily composed of the protein polymer named curli and the polysaccharide cellulose, promotes adherence to organic and inorganic surfaces and resistance to desiccation, the host immune system, and other antimicrobials. The pathways that govern E. coli biofilm formation, cellulose production, and curli biogenesis will be discussed in this article, which concludes with insights into the future of E. coli biofilm research and potential therapies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Celulosa/metabolismo , Escherichia coli/metabolismo , Matriz Extracelular/metabolismo , Animales , Antibacterianos/farmacología , Adhesión Bacteriana/fisiología , Farmacorresistencia Bacteriana Múltiple/fisiología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/inmunología , Humanos , Evasión Inmune/inmunología , Infecciones Urinarias/microbiología
7.
Appl Environ Microbiol ; 80(22): 7079-87, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25192998

RESUMEN

Enteric bacteria, such as Escherichia coli, are exposed to a variety of stresses in the nonhost environment. The development of biofilms provides E. coli with resistance to environmental insults, such as desiccation and bleach. We found that biofilm formation, specifically production of the matrix components curli and cellulose, protected E. coli against killing by the soil-dwelling nematode Caenorhabditis elegans and the predatory bacterium Myxococcus xanthus. Additionally, matrix-encased bacteria at the air-biofilm interface exhibited ∼40-fold-increased survival after C. elegans and M. xanthus killing compared to the non-matrix-encased cells that populate the interior of the biofilm. To determine if nonhost Enterobacteriaceae reservoirs supported biofilm formation, we grew E. coli on media composed of pig dung or commonly contaminated foods, such as beef, chicken, and spinach. Each of these medium types provided a nutritional environment that supported matrix production and biofilm formation. Altogether, we showed that common, nonhost reservoirs of E. coli supported the formation of biofilms that subsequently protected E. coli against predation.


Asunto(s)
Biopelículas , Caenorhabditis elegans/fisiología , Escherichia coli/fisiología , Carne/microbiología , Myxococcus xanthus/fisiología , Verduras/microbiología , Animales , Bovinos , Pollos , Contaminación de Alimentos/análisis , Porcinos
8.
J Bacteriol ; 196(21): 3690-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25112475

RESUMEN

The bacterial extracellular matrix encases cells and protects them from host-related and environmental insults. The Escherichia coli master biofilm regulator CsgD is required for the production of the matrix components curli and cellulose. CsgD activates the diguanylate cyclase AdrA, which in turn stimulates cellulose production through cyclic di-GMP (c-di-GMP). Here, we identified and characterized a CsgD- and AdrA-independent cellulose production pathway that was maximally active when cultures were grown under reducing conditions or when the disulfide bonding system (DSB) was compromised. The CsgD-independent cellulose activation pathway was dependent on a second diguanylate cyclase, called YfiN. c-di-GMP production by YfiN was repressed by the periplasmic protein YfiR, and deletion of yfiR promoted CsgD-independent cellulose production. Conversely, when YfiR was overexpressed, cellulose production was decreased. Finally, we found that YfiR was oxidized by DsbA and that intraprotein YfiR disulfide bonds stabilized YfiR in the periplasm. Altogether, we showed that reducing conditions and mutations in the DSB system caused hyperactivation of YfiN and subsequent CsgD-independent cellulose production.


Asunto(s)
Celulosa/biosíntesis , Disulfuros/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Transactivadores/metabolismo , Biopelículas , Disulfuros/química , Proteínas de Escherichia coli/genética , Mutación , Transactivadores/genética
9.
Proc Natl Acad Sci U S A ; 110(7): 2629-34, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23359678

RESUMEN

Bacterial biofilm formation is a complex developmental process involving cellular differentiation and the formation of intricate 3D structures. Here we demonstrate that exposure to ferric chloride triggers rugose biofilm formation by the uropathogenic Escherichia coli strain UTI89 and by enteric bacteria Citrobacter koseri and Salmonella enterica serovar typhimurium. Two unique and separable cellular populations emerge in iron-triggered, rugose biofilms. Bacteria at the air-biofilm interface express high levels of the biofilm regulator csgD, the cellulose activator adrA, and the curli subunit operon csgBAC. Bacteria in the interior of rugose biofilms express low levels of csgD and undetectable levels of matrix components curli and cellulose. Iron activation of rugose biofilms is linked to oxidative stress. Superoxide generation, either through addition of phenazine methosulfate or by deletion of sodA and sodB, stimulates rugose biofilm formation in the absence of high iron. Additionally, overexpression of Mn-superoxide dismutase, which can mitigate iron-derived reactive oxygen stress, decreases biofilm formation in a WT strain upon iron exposure. Not only does reactive oxygen stress promote rugose biofilm formation, but bacteria in the rugose biofilms display increased resistance to H(2)O(2) toxicity. Altogether, we demonstrate that iron and superoxide stress trigger rugose biofilm formation in UTI89. Rugose biofilm development involves the elaboration of two distinct bacterial populations and increased resistance to oxidative stress.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Cloruros/farmacología , Citrobacter koseri/crecimiento & desarrollo , Escherichia coli Enteropatógena/crecimiento & desarrollo , Compuestos Férricos/farmacología , Salmonella typhimurium/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Western Blotting , Citrobacter koseri/efectos de los fármacos , Escherichia coli Enteropatógena/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Peróxido de Hidrógeno/metabolismo , Microscopía Confocal , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salmonella typhimurium/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Transactivadores/metabolismo , beta-Galactosidasa/metabolismo
10.
Res Microbiol ; 163(9-10): 592-606, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23108148

RESUMEN

Microbial biofilms are encased in a protein, DNA, and polysaccharide matrix that protects the community, promotes interactions with the environment, and helps cells adhere together. The protein component of these matrices is often a remarkably stable, ß-sheet-rich polymer called amyloid. Amyloids form ordered, self-templating fibers that are highly aggregative, making them a valuable biofilm component. Some eukaryotic proteins inappropriately adopt the amyloid fold, and these misfolded protein aggregates disrupt normal cellular proteostasis, which can cause significant cytotoxicity. Indeed, until recently amyloids were considered solely the result of protein misfolding. However, research over the past decade has revealed how various organisms have capitalized on the amyloid fold by developing sophisticated biogenesis pathways that coordinate gene expression, protein folding, and secretion so that amyloid-related toxicities are minimized. How microbes manipulate amyloids, by augmenting their advantageous properties and by reducing their undesirable properties, will be the subject of this review.


Asunto(s)
Amiloide/metabolismo , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Amiloide/química , Proteínas Bacterianas/química , Modelos Moleculares , Pliegue de Proteína , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...