Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 5(3)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576651

RESUMEN

Microbial diversity in the cystic fibrosis (CF) lung decreases over decades as pathogenic bacteria such as Pseudomonas aeruginosa take over. The dynamics of the CF microbiome and metabolome over shorter time frames, however, remain poorly studied. Here, we analyze paired microbiome and metabolome data from 594 sputum samples collected over 401 days from six adult CF subjects (subject mean = 179 days) through periods of clinical stability and 11 CF pulmonary exacerbations (CFPE). While microbiome profiles were personalized (permutational multivariate analysis of variance [PERMANOVA] r 2 = 0.79, P < 0.001), we observed significant intraindividual temporal variation that was highest during clinical stability (linear mixed-effects [LME] model, P = 0.002). This included periods where the microbiomes of different subjects became highly similar (UniFrac distance, <0.05). There was a linear increase in the microbiome alpha-diversity and in the log ratio of anaerobes to pathogens with time (n = 14 days) during the development of a CFPE (LME P = 0.0045 and P = 0.029, respectively). Collectively, comparing samples across disease states showed there was a reduction of these two measures during antibiotic treatment (LME P = 0.0096 and P = 0.014, respectively), but the stability data and CFPE data were not significantly different from each other. Metabolome alpha-diversity was higher during CFPE than during stability (LME P = 0.0085), but no consistent metabolite signatures of CFPE across subjects were identified. Virulence-associated metabolites from P. aeruginosa were temporally dynamic but were not associated with any disease state. One subject died during the collection period, enabling a detailed look at changes in the 194 days prior to death. This subject had over 90% Pseudomonas in the microbiome at the beginning of sampling, and that level gradually increased to over 99% prior to death. This study revealed that the CF microbiome and metabolome of some subjects are dynamic through time. Future work is needed to understand what drives these temporal dynamics and if reduction of anaerobes correlate to clinical response to CFPE therapy.IMPORTANCE Subjects with cystic fibrosis battle polymicrobial lung infections throughout their lifetime. Although antibiotic therapy is a principal treatment for CF lung disease, we have little understanding of how antibiotics affect the CF lung microbiome and metabolome and how much the community changes on daily timescales. By analyzing 594 longitudinal CF sputum samples from six adult subjects, we show that the sputum microbiome and metabolome are dynamic. Significant changes occur during times of stability and also through pulmonary exacerbations (CFPEs). Microbiome alpha-diversity increased as a CFPE developed and then decreased during treatment in a manner corresponding to the reduction in the log ratio of anaerobic bacteria to classic pathogens. Levels of metabolites from the pathogen P. aeruginosa were also highly variable through time and were negatively associated with anaerobes. The microbial dynamics observed in this study may have a significant impact on the outcome of antibiotic therapy for CFPEs and overall subject health.

2.
Microbiome ; 7(1): 23, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760325

RESUMEN

BACKGROUND: Studies of the cystic fibrosis (CF) lung microbiome have consistently shown that lung function decline is associated with decreased microbial diversity due to the dominance of opportunistic pathogens. However, how this phenomenon is reflected in the metabolites and chemical environment of lung secretions remains poorly understood. METHODS: Here we investigated the microbial and molecular composition of CF sputum samples using 16S rRNA gene amplicon sequencing and untargeted tandem mass spectrometry to determine their interrelationships and associations with clinical measures of disease severity. RESULTS: The CF metabolome was found to exist in two states: one from patients with more severe disease that had higher molecular diversity and more Pseudomonas aeruginosa and the other from patients with better lung function having lower metabolite diversity and fewer pathogenic bacteria. The two molecular states were differentiated by the abundance and diversity of peptides and amino acids. Patients with severe disease and more pathogenic bacteria had higher levels of peptides. Analysis of the carboxyl terminal residues of these peptides indicated that neutrophil elastase and cathepsin G were responsible for their generation, and accordingly, these patients had higher levels of proteolytic activity from these enzymes in their sputum. The CF pathogen Pseudomonas aeruginosa was correlated with the abundance of amino acids and is known to primarily feed on them in the lung. CONCLUSIONS: In cases of severe CF lung disease, proteolysis by host enzymes creates an amino acid-rich environment that P. aeruginosa comes to dominate, which may contribute to the pathogen's persistence by providing its preferred carbon source.


Asunto(s)
Fibrosis Quística/patología , Pulmón/microbiología , Pulmón/patología , Microbiota/fisiología , Neutrófilos/enzimología , Pseudomonas aeruginosa/aislamiento & purificación , Aminoácidos/metabolismo , Catepsina G/metabolismo , Fibrosis Quística/microbiología , Disbiosis/microbiología , Humanos , Elastasa de Leucocito/metabolismo , Microbiota/genética , Proteolisis , Proteoma/análisis , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/genética , ARN Ribosómico 16S/genética , Esputo/microbiología , Espectrometría de Masas en Tándem
3.
mSystems ; 3(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29795809

RESUMEN

Although much work has linked the human microbiome to specific phenotypes and lifestyle variables, data from different projects have been challenging to integrate and the extent of microbial and molecular diversity in human stool remains unknown. Using standardized protocols from the Earth Microbiome Project and sample contributions from over 10,000 citizen-scientists, together with an open research network, we compare human microbiome specimens primarily from the United States, United Kingdom, and Australia to one another and to environmental samples. Our results show an unexpected range of beta-diversity in human stool microbiomes compared to environmental samples; demonstrate the utility of procedures for removing the effects of overgrowth during room-temperature shipping for revealing phenotype correlations; uncover new molecules and kinds of molecular communities in the human stool metabolome; and examine emergent associations among the microbiome, metabolome, and the diversity of plants that are consumed (rather than relying on reductive categorical variables such as veganism, which have little or no explanatory power). We also demonstrate the utility of the living data resource and cross-cohort comparison to confirm existing associations between the microbiome and psychiatric illness and to reveal the extent of microbiome change within one individual during surgery, providing a paradigm for open microbiome research and education. IMPORTANCE We show that a citizen science, self-selected cohort shipping samples through the mail at room temperature recaptures many known microbiome results from clinically collected cohorts and reveals new ones. Of particular interest is integrating n = 1 study data with the population data, showing that the extent of microbiome change after events such as surgery can exceed differences between distinct environmental biomes, and the effect of diverse plants in the diet, which we confirm with untargeted metabolomics on hundreds of samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...