Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Primatol ; : e23677, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146198

RESUMEN

Measuring glucocorticoids such as cortisol is a useful tool for exploring relationships among behavior, physiology, and well-being in primates. As cortisol circulates in blood, it moves into biological matrices such as hair, urine, feces, and saliva. Saliva sampling is a simple, noninvasive method to measure cortisol that can be easily implemented by training animals to voluntarily provide samples. The temporal lag between elevation of cortisol in the blood and elevation of cortisol in saliva likely varies by species and must be characterized to identify appropriate sampling regimens. In the present study we characterized the time course of cortisol changes in saliva following an acute psychological stressor in captive tufted capuchin monkeys (Sapajus apella). We trained eight free-moving female tufted capuchin monkeys to voluntarily produce clean saliva samples. We exposed them to the acute stressor of a veterinary catch net and observed behavior pre and post exposure. We collected salivary samples immediately pre exposure (0 min) and 30, 45, 60, 75, 90, and 120 min after exposure. Salivary cortisol was quantified using a Salimetrics kit. Behavioral and cortisol measures were compared within individuals to a control condition in which no stressor was presented. Capuchins showed a clear behavioral response to the stressor by demonstrating increased freezing and pacing, decreased feed foraging, nonsocial play, and scratching, and decreased willingness to provide saliva samples after stressor presentation. After stressor presentation, average salivary cortisol began to increase at 30 min and continued to increase through the 120 min sample period. There was individual variation in absolute cortisol levels, the timing of the cortisol increase, and the timing of the peak. Our results suggest that no single time-point can be reliably used to evaluate salivary cortisol response to an acute stressor across individuals, and instead we recommend the collection of a prolonged time series.

2.
Cogn Affect Behav Neurosci ; 24(2): 325-348, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200282

RESUMEN

Concerns about poor animal to human translation have come increasingly to the fore, in particular with regards to cognitive improvements in rodent models, which have failed to translate to meaningful clinical benefit in humans. This problem has been widely acknowledged, most recently in the field of Alzheimer's disease, although this issue pervades the spectrum of central nervous system (CNS) disorders, including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Consequently, recent efforts have focused on improving preclinical to clinical translation by incorporating more clinically analogous outcome measures of cognition, such as touchscreen-based assays, which can be employed across species, and have great potential to minimize the translational gap. For aging-related research, it also is important to incorporate model systems that facilitate the study of the long prodromal phase in which cognitive decline begins to emerge and which is a major limitation of short-lived species, such as laboratory rodents. We posit that to improve translation of cognitive function and dysfunction, nonhuman primate models, which have conserved anatomical and functional organization of the primate brain, are necessary to move the field of translational research forward and to bridge the translational gaps. The present studies describe the establishment of a comprehensive battery of touchscreen-based tasks that capture a spectrum of domains sensitive to detecting aging-related cognitive decline, which will provide the greatest benefit through longitudinal evaluation throughout the prolonged lifespan of the marmoset.


Asunto(s)
Envejecimiento , Callithrix , Investigación Biomédica Traslacional , Animales , Envejecimiento/fisiología , Investigación Biomédica Traslacional/métodos , Masculino , Cognición/fisiología , Femenino , Modelos Animales de Enfermedad , Pruebas Neuropsicológicas/normas , Trastornos del Conocimiento/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA