Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Transl Neurodegener ; 13(1): 13, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438877

RESUMEN

BACKGROUND: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). These mutations elevate the LRRK2 kinase activity, making LRRK2 kinase inhibitors an attractive therapeutic. LRRK2 kinase activity has been consistently linked to specific cell signaling pathways, mostly related to organelle trafficking and homeostasis, but its relationship to PD pathogenesis has been more difficult to define. LRRK2-PD patients consistently present with loss of dopaminergic neurons in the substantia nigra but show variable development of Lewy body or tau tangle pathology. Animal models carrying LRRK2 mutations do not develop robust PD-related phenotypes spontaneously, hampering the assessment of the efficacy of LRRK2 inhibitors against disease processes. We hypothesized that mutations in LRRK2 may not be directly related to a single disease pathway, but instead may elevate the susceptibility to multiple disease processes, depending on the disease trigger. To test this hypothesis, we have previously evaluated progression of α-synuclein and tau pathologies following injection of proteopathic seeds. We demonstrated that transgenic mice overexpressing mutant LRRK2 show alterations in the brain-wide progression of pathology, especially at older ages. METHODS: Here, we assess tau pathology progression in relation to long-term LRRK2 kinase inhibition. Wild-type or LRRK2G2019S knock-in mice were injected with tau fibrils and treated with control diet or diet containing LRRK2 kinase inhibitor MLi-2 targeting the IC50 or IC90 of LRRK2 for 3-6 months. Mice were evaluated for tau pathology by brain-wide quantitative pathology in 844 brain regions and subsequent linear diffusion modeling of progression. RESULTS: Consistent with our previous work, we found systemic alterations in the progression of tau pathology in LRRK2G2019S mice, which were most pronounced at 6 months. Importantly, LRRK2 kinase inhibition reversed these effects in LRRK2G2019S mice, but had minimal effect in wild-type mice, suggesting that LRRK2 kinase inhibition is likely to reverse specific disease processes in G2019S mutation carriers. Additional work may be necessary to determine the potential effect in non-carriers. CONCLUSIONS: This work supports a protective role of LRRK2 kinase inhibition in G2019S carriers and provides a rational workflow for systematic evaluation of brain-wide phenotypes in therapeutic development.


Asunto(s)
Encéfalo , Neuronas Dopaminérgicas , Animales , Humanos , Ratones , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Cuerpos de Lewy , Ratones Transgénicos , Mutación/genética
2.
Nat Commun ; 15(1): 2642, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531900

RESUMEN

A key hallmark of Parkinson's disease (PD) is Lewy pathology. Composed of α-synuclein, Lewy pathology is found both in dopaminergic neurons that modulate motor function, and cortical regions that control cognitive function. Recent work has established the molecular identity of dopaminergic neurons susceptible to death, but little is known about cortical neurons susceptible to Lewy pathology or molecular changes induced by aggregates. In the current study, we use spatial transcriptomics to capture whole transcriptome signatures from cortical neurons with α-synuclein pathology compared to neurons without pathology. We find, both in PD and related PD dementia, dementia with Lewy bodies and in the pre-formed fibril α-synucleinopathy mouse model, that specific classes of excitatory neurons are vulnerable to developing Lewy pathology. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. Neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and describe a conserved signature of molecular dysfunction in both mice and humans.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Sinucleinopatías , Humanos , Ratones , Animales , alfa-Sinucleína/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas/metabolismo , Perfilación de la Expresión Génica
3.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37292685

RESUMEN

Lewy pathology composed of α-synuclein is the key pathological hallmark of Parkinson's disease (PD), found both in dopaminergic neurons that control motor function, and throughout cortical regions that control cognitive function. Recent work has investigated which dopaminergic neurons are most susceptible to death, but little is known about which neurons are vulnerable to developing Lewy pathology and what molecular changes an aggregate induces. In the current study, we use spatial transcriptomics to selectively capture whole transcriptome signatures from cortical neurons with Lewy pathology compared to those without pathology in the same brains. We find, both in PD and in a mouse model of PD, that there are specific classes of excitatory neurons that are vulnerable to developing Lewy pathology in the cortex. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. This gene signature indicates that neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. However, beyond DNA repair gene upregulation, we find that neurons also activate apoptotic pathways, suggesting that if DNA repair fails, neurons undergo programmed cell death. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and identify a conserved signature of molecular dysfunction in both mice and humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...