Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(42): 9035-9049, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37831812

RESUMEN

DNA is damaged through various exogenous sources (e.g., automobile exhaust, tobacco smoke, and processed foods), which can yield diverse C8-dG bulky aryl adducts. Adducts are known to induce structural changes to DNA that can lead to various biological outcomes, ranging from cell death to diseases such as cancer. Unfortunately, the relationship between the chemical composition of the damaged product, the adducted DNA structure, and the biological consequences is not well understood, which limits the development of disease detection and prevention strategies. The present study uses density functional theory (DFT) calculations and quintuplicate 1 µs molecular dynamics (MD) simulations to characterize the structure of DNA containing 21 model C8-dG adducts that systematically differ in size (phenyl to pyrenyl), shape (α (2,3), ß (3,4) fusion, or ring substitution), and nucleobase-aryl group linkage (N, O, and C-linked). DFT calculations reveal that the inherent structural features of the G nucleobase adducts are impacted by linker type and bulky moiety shape, but not size, with the conformational flexibility reducing with α-ring fusion and linker composition as N > O > C. These structural properties are maintained in nucleoside models, which also reveal an increased propensity for anti-to-syn rotation about the glycosidic bond with N < O < C linker type. Although these diverse chemical features do not influence the global structure of adducted DNA, the adducts differentially impact the conformation local to the adducted site, including the relative populations of structures with the bulky moiety in the major groove (B conformer) and intercalated (stacked) into the helix (S conformer). Specifically, while the smallest phenyl adducts favor the B conformation and the largest pyrenyl-derived adducts stabilize the S conformation, the B/S ratio decreases with an increase in ring size and N > O > C linker composition. The shape and size (length) of the adduct can further finetune the B/S ratio, with ß-fused naphthyl or α-fused phenanthryl N-linked adducts and O or C-linked adducts containing ring substitution increasing the prevalence of the S adducted DNA conformation. Overall, this work uncovers the significant effect of bulky moiety size and linker type, as well as the lesser impact of aryl group shape, on adducted DNA structure, which suggests differential replication and repair outcomes, and thereby represents an important step toward rationalizing connections between the structure and biological consequences of diverse DNA adducts.


Asunto(s)
Guanina , Simulación de Dinámica Molecular , Guanina/química , Aductos de ADN , ADN/química , Conformación de Ácido Nucleico
2.
J Chem Inf Model ; 61(5): 2313-2327, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33977716

RESUMEN

Human exposure to aromatic amines (AAs) can result in carcinogenic DNA adducts. To complement previous work geared toward understanding the mutagenicity of AA-derived adducts, which has almost exclusively studied (monoadducted) DNA containing a single lesion, the present work provides the first in-depth comparison of the structure of monoadducted and diadducted DNA duplexes. Specifically, molecular dynamics (MD) simulations were initially performed on DNA containing the nonmutagenic single-ringed N-(deoxyguanosin-8-yl)-aniline (ANdG) or the mutagenic four-ringed N-(deoxyguanosin-8-yl)-1-aminopyrene (APdG) lesion at G1, G2, or G3 in the AA deletion hotspot (5'-G1G2CG3CC) in the anti or syn glycosidic orientation (B/S duplex conformation). Subsequently, diadducted strands were assessed that span each combination of damaged sites (G1G2 (nearest neighbors), G2G3 (next-nearest neighbors), and G1G3 (two intervening nucleotides)) and anti/syn lesion glycosidic orientations. Despite other N-linked C8-dG adducts exhibiting sequence dependence conformational heterogeneity, a single ANdG or APdG lesion induces helical conformational homogeneity that is exclusively controlled by aryl moiety size. However, the preferred damaged DNA conformation can change upon the addition of a second adduct depending on lesion separation, with neighboring lesions stabilizing a nonmutagenic conformation and next-nearest damaged sites stabilizing a promutagenic conformation regardless of adduct size. As a result, diadducted DNA is found to adopt conformations that are unfavored for the corresponding monoadducted system, pointing to differential replication and repair outcomes for diadducted DNA compared to those for monoadducted DNA. Thus, although the toxicity of monoadducted DNA is most significantly dictated by lesion size, the toxicity can increase or decrease upon a second damaging event depending on lesion size and relative position. Overall, our work adds the number of lesions and their spatial separation to the growing list of factors that determine the structure and biological outcomes of adducted DNA.


Asunto(s)
Aductos de ADN , Simulación de Dinámica Molecular , Aminas/toxicidad , ADN , Humanos , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...