Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nature ; 594(7862): 207-212, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108699

RESUMEN

Chip floorplanning is the engineering task of designing the physical layout of a computer chip. Despite five decades of research1, chip floorplanning has defied automation, requiring months of intense effort by physical design engineers to produce manufacturable layouts. Here we present a deep reinforcement learning approach to chip floorplanning. In under six hours, our method automatically generates chip floorplans that are superior or comparable to those produced by humans in all key metrics, including power consumption, performance and chip area. To achieve this, we pose chip floorplanning as a reinforcement learning problem, and develop an edge-based graph convolutional neural network architecture capable of learning rich and transferable representations of the chip. As a result, our method utilizes past experience to become better and faster at solving new instances of the problem, allowing chip design to be performed by artificial agents with more experience than any human designer. Our method was used to design the next generation of Google's artificial intelligence (AI) accelerators, and has the potential to save thousands of hours of human effort for each new generation. Finally, we believe that more powerful AI-designed hardware will fuel advances in AI, creating a symbiotic relationship between the two fields.

3.
NPJ Digit Med ; 4(1): 5, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420381

RESUMEN

A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields-including medicine-to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques-powered by deep learning-for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit-including cardiology, pathology, dermatology, ophthalmology-and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.

4.
BMC Med Inform Decis Mak ; 20(1): 14, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32000770

RESUMEN

BACKGROUND: Automated machine-learning systems are able to de-identify electronic medical records, including free-text clinical notes. Use of such systems would greatly boost the amount of data available to researchers, yet their deployment has been limited due to uncertainty about their performance when applied to new datasets. OBJECTIVE: We present practical options for clinical note de-identification, assessing performance of machine learning systems ranging from off-the-shelf to fully customized. METHODS: We implement a state-of-the-art machine learning de-identification system, training and testing on pairs of datasets that match the deployment scenarios. We use clinical notes from two i2b2 competition corpora, the Physionet Gold Standard corpus, and parts of the MIMIC-III dataset. RESULTS: Fully customized systems remove 97-99% of personally identifying information. Performance of off-the-shelf systems varies by dataset, with performance mostly above 90%. Providing a small labeled dataset or large unlabeled dataset allows for fine-tuning that improves performance over off-the-shelf systems. CONCLUSION: Health organizations should be aware of the levels of customization available when selecting a de-identification deployment solution, in order to choose the one that best matches their resources and target performance level.


Asunto(s)
Anonimización de la Información/normas , Registros Electrónicos de Salud , Aprendizaje Automático/normas , Conjuntos de Datos como Asunto , Humanos
5.
Nat Med ; 25(1): 24-29, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30617335

RESUMEN

Here we present deep-learning techniques for healthcare, centering our discussion on deep learning in computer vision, natural language processing, reinforcement learning, and generalized methods. We describe how these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems. Our discussion of computer vision focuses largely on medical imaging, and we describe the application of natural language processing to domains such as electronic health record data. Similarly, reinforcement learning is discussed in the context of robotic-assisted surgery, and generalized deep-learning methods for genomics are reviewed.


Asunto(s)
Aprendizaje Profundo , Atención a la Salud , Diagnóstico por Imagen , Registros Electrónicos de Salud , Humanos , Procesamiento de Lenguaje Natural
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...