Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
2.
Brain Behav Immun ; 121: 104-118, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39043347

RESUMEN

BACKGROUND: Exposure to postnatal systemic inflammation is associated with increased risk of brain injury in preterm infants, leading to impaired maturation of the cerebral cortex and adverse neurodevelopmental outcomes. However, the optimal method for identifying cortical dysmaturation is unclear. Herein, we compared the utility of electroencephalography (EEG), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) at different recovery times after systemic inflammation in newborn rats. METHODS: Sprague Dawley rat pups of both sexes received single-daily lipopolysaccharide (LPS; 0.3 mg/kg i.p.; n = 51) or saline (n = 55) injections on postnatal days (P)1, 2, and 3. A subset of these animals were implanted with EEG electrodes. Cortical EEG was recorded for 30 min from unanesthetized, unrestrained pups at P7, P14, and P21, and in separate groups, brain tissues were collected at these ages for ex-vivo MRI analysis (9.4 T) and Golgi-Cox staining (to assess neuronal morphology) in the motor cortex. RESULTS: Postnatal inflammation was associated with reduced cortical pyramidal neuron arborization from P7, P14, and P21. These changes were associated with dysmature EEG features (e.g., persistence of delta waveforms, higher EEG amplitude, reduced spectral edge frequency) at P7 and P14, and higher EEG power in the theta and alpha ranges at P21. By contrast, there were no changes in cortical DTI or NODDI in LPS rats at P7 or P14, while there was an increase in cortical fractional anisotropy (FA) and decrease in orientation dispersion index (ODI) at P21. CONCLUSIONS: EEG may be useful for identifying the early evolution of impaired cortical development after early life postnatal systemic inflammation, while DTI and NODDI seem to be more suited to assessing established cortical changes.


Asunto(s)
Animales Recién Nacidos , Corteza Cerebral , Imagen de Difusión Tensora , Electroencefalografía , Inflamación , Lipopolisacáridos , Imagen por Resonancia Magnética , Ratas Sprague-Dawley , Animales , Ratas , Electroencefalografía/métodos , Femenino , Masculino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Imagen por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Corteza Motora/fisiopatología
3.
Exp Neurol ; 371: 114611, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944882

RESUMEN

BACKGROUND AND PURPOSE: There is growing evidence that infants with mild hypoxic-ischemic (HI) encephalopathy have increased risk of brain injury and adverse neurodevelopmental outcomes. Currently, there is no approved treatment for these infants. It was previously shown that blocking connexin 43 hemichannels is neuroprotective in models of moderate to severe HI injury. However, it is yet to be established whether these channels play a role in the evolution of mild HI brain injury, and whether blocking these channels after mild HI is neuroprotective. METHODS: HI was induced in postnatal day 10 rats of both sexes by right carotid artery ligation followed by 80 min of hypoxia in 8% oxygen. Pups receiving HI were randomised to receive intraperitoneal injections of either saline, vehicle (2-hydroxypropyl-beta-cyclodextrin polyethylene glycol-400), or tonabersat (2 mg/kg), at 60 min, 24 h, and 48 h after hypoxia. Seven days after HI, brains were harvested for measurement of volume loss and histological analysis. RESULTS: HI resulted in a significant reduction in hemispheric, hippocampal, and white matter volumes, which were significantly attenuated after treatment with tonabersat. HI was also associated with a significant reduction in numbers of neurons in the CA1 and CA3 hippocampal regions, a reduction in the numbers of oligodendrocytes in the corpus callosum, and an increase in the number of astrocytes in both regions, which were significantly attenuated by tonabersat treatment. There were no differences in rectal temperatures between tonabersat- and vehicle-treated rat pups. CONCLUSIONS: Blockade of connexin hemichannels with tonabersat significantly reduced mild HI injury in the hippocampus and white matter, without causing hypothermia.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Femenino , Masculino , Ratas , Animales Recién Nacidos , Encéfalo/patología , Lesiones Encefálicas/patología , Conexinas , Hipoxia/patología , Hipoxia-Isquemia Encefálica/prevención & control , Hipoxia-Isquemia Encefálica/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
4.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069249

RESUMEN

Seizures are common in preterm newborns and are associated with poor neurodevelopmental outcomes. Current anticonvulsants have poor efficacy, and many have been associated with upregulation of apoptosis in the developing brain. Apigenin, a natural bioactive flavonoid, is a potent inhibitor of hyaluronidase and reduces seizures in adult animal models. However, its impact on perinatal seizures is unclear. In the present study, we examined the effect of apigenin and S3, a synthetic, selective hyaluronidase inhibitor, on seizures after cerebral ischemia in preterm fetal sheep at 0.7 gestation (98-99 days, term ~147 days). Fetuses received sham ischemia (n = 9) or ischemia induced by bilateral carotid occlusion for 25 min. Immediately after ischemia, fetuses received either a continuous infusion of vehicle (0.036% dimethyl sulfoxide, n = 8) or apigenin (50 µM, n = 6). In a pilot study, we also tested infusion of S3 (2 µM, n = 3). Fetuses were monitored continuously for 72 h after ischemia. Infusion of apigenin or S3 were both associated with reduced numbers of animals with seizures, total seizure time, and mean seizure burden. S3 was also associated with a reduction in the total number of seizures over the 72 h recovery period. In animals that developed seizures, apigenin was associated with earlier cessation of seizures. However, apigenin or S3 treatment did not alter recovery of electroencephalographic power or spectral edge frequency. These data support that targeting brain hyaluronidase activity with apigenin or S3 may be an effective strategy to reduce perinatal seizures following ischemia. Further studies are required to determine their effects on neurohistological outcomes.


Asunto(s)
Apigenina , Hipoxia-Isquemia Encefálica , Embarazo , Femenino , Ovinos , Animales , Apigenina/farmacología , Apigenina/uso terapéutico , Hialuronoglucosaminidasa , Proyectos Piloto , Convulsiones/tratamiento farmacológico , Feto/patología , Isquemia , Electroencefalografía , Hipoxia-Isquemia Encefálica/patología
5.
J Neuroinflammation ; 20(1): 124, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226206

RESUMEN

BACKGROUND: Antenatal infection/inflammation is associated with disturbances in neuronal connectivity, impaired cortical growth and poor neurodevelopmental outcomes. The pathophysiological substrate that underpins these changes is poorly understood. We tested the hypothesis that progressive inflammation in late gestation fetal sheep would alter cortical neuronal microstructure and neural function assessed using electroencephalogram band power analysis. METHODS: Fetal sheep (0.85 of gestation) were surgically instrumented for continuous electroencephalogram (EEG) recording and randomly assigned to repeated saline (control; n = 9) or LPS (0 h = 300 ng, 24 h = 600 ng, 48 h = 1200 ng; n = 8) infusions to induce inflammation. Sheep were euthanised 4 days after the first LPS infusion for assessment of inflammatory gene expression, histopathology and neuronal dendritic morphology in the somatosensory cortex. RESULTS: LPS infusions increased delta power between 8 and 50 h, with reduced beta power from 18 to 96 h (P < 0.05 vs. control). Basal dendritic length, numbers of dendritic terminals, dendritic arborisation and numbers of dendritic spines were reduced in LPS-exposed fetuses (P < 0.05 vs. control) within the somatosensory cortex. Numbers of microglia and interleukin (IL)-1ß immunoreactivity were increased in LPS-exposed fetuses compared with controls (P < 0.05). There were no differences in total numbers of cortical NeuN + neurons or cortical area between the groups. CONCLUSIONS: Exposure to antenatal infection/inflammation was associated with impaired dendritic arborisation, spine number and loss of high-frequency EEG activity, despite normal numbers of neurons, that may contribute to disturbed cortical development and connectivity.


Asunto(s)
Corteza Cerebral , Electroencefalografía , Inflamación , Animales , Femenino , Embarazo , Feto , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Microglía , Ovinos , Dendritas , Corteza Cerebral/crecimiento & desarrollo
6.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36835117

RESUMEN

Therapeutic hypothermia significantly improves outcomes after neonatal hypoxic-ischemic (HI) encephalopathy but is only partially protective. There is evidence that cortical inhibitory interneuron circuits are particularly vulnerable to HI and that loss of interneurons may be an important contributor to long-term neurological dysfunction in these infants. In the present study, we examined the hypothesis that the duration of hypothermia has differential effects on interneuron survival after HI. Near-term fetal sheep received sham ischemia or cerebral ischemia for 30 min, followed by cerebral hypothermia from 3 h after ischemia end and continued up to 48 h, 72 h, or 120 h recovery. Sheep were euthanized after 7 days for histology. Hypothermia up to 48 h recovery resulted in moderate neuroprotection of glutamate decarboxylase (GAD)+ and parvalbumin+ interneurons but did not improve survival of calbindin+ cells. Hypothermia up to 72 h recovery was associated with significantly increased survival of all three interneuron phenotypes compared with sham controls. By contrast, while hypothermia up to 120 h recovery did not further improve (or impair) GAD+ or parvalbumin+ neuronal survival compared with hypothermia up to 72 h, it was associated with decreased survival of calbindin+ interneurons. Finally, protection of parvalbumin+ and GAD+ interneurons, but not calbindin+ interneurons, with hypothermia was associated with improved recovery of electroencephalographic (EEG) power and frequency by day 7 after HI. The present study demonstrates differential effects of increasing the duration of hypothermia on interneuron survival after HI in near-term fetal sheep. These findings may contribute to the apparent preclinical and clinical lack of benefit of very prolonged hypothermia.


Asunto(s)
Infarto Cerebral , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Animales , Infarto Cerebral/patología , Infarto Cerebral/terapia , Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica/patología , Interneuronas/patología , Isquemia/patología , Isquemia/terapia , Parvalbúminas , Ovinos
7.
J Math Biol ; 85(2): 14, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871109

RESUMEN

RNA and protein concentrations within cells constantly fluctuate. Some molecular species typically have very low copy numbers, so stochastic changes in their abundances can dramatically alter cellular concentration levels. Such noise can be harmful through constrained functionality or reduced efficiency. Gene regulatory networks have evolved to be robust in the face of noise. We obtain exact analytical expressions for noise dissipation in an idealised stochastic model of a gene regulatory network. We show that noise decays exponentially fast. The decay rate for RNA molecular counts is given by the integral of the tail of the cumulative distribution function of the degradation time. For proteins, it is given by the slowest rate-limiting step of RNA degradation or proteolytic breakdown. This is intuitive because memory of the chemical composition of the system is manifested through molecular persistence. The results are obtained by analysing a non-standard tandem of infinite server queues, in which the number of customers present in one queue modulates the arrival rate into the next.


Asunto(s)
Redes Reguladoras de Genes , Programas Informáticos , Modelos Genéticos , Proteínas , ARN , Procesos Estocásticos
9.
PLoS Comput Biol ; 18(5): e1010179, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35622852

RESUMEN

Cancer is one of the leading causes of death, but mortality can be reduced by detecting tumors earlier so that treatment is initiated at a less aggressive stage. The tradeoff between costs associated with screening and its benefit makes the decision of whom to screen and when a challenge. To enable comparisons across screening strategies for any cancer type, we demonstrate a mathematical modeling platform based on the theory of queuing networks designed for quantifying the benefits of screening strategies. Our methodology can be used to design optimal screening protocols and to estimate their benefits for specific patient populations. Our method is amenable to exact analysis, thus circumventing the need for simulations, and is capable of exactly quantifying outcomes given variability in the age of diagnosis, rate of progression, and screening sensitivity and intervention outcomes. We demonstrate the power of this methodology by applying it to data from the Surveillance, Epidemiology and End Results (SEER) program. Our approach estimates the benefits that various novel screening programs would confer to different patient populations, thus enabling us to formulate an optimal screening allocation and quantify its potential effects for any cancer type and intervention.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias , Humanos , Tamizaje Masivo , Modelos Teóricos , Neoplasias/diagnóstico
10.
Mater Today Bio ; 13: 100212, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35198960

RESUMEN

Despite the demonstrated effectiveness of nano-materials for drug delivery to the brain, a comprehensive understanding of their transport processes across the blood brain barrier (BBB) remains undefined. This multidisciplinary study aimed to gain an insight into the transport processes across BBB, focusing on the transcytosis of liposomes and the impact of liposomal pH-sensitivity. Glutathione-PEGylated pH-sensitive (GSH-PEG-pSL) and non pH-sensitive liposomes (GSH-PEG-L) were fluorescently labelled with rhodamine-DOPE and calcein, both impermeable to biomembranes. Following exposure to brain microvascular endothelial cells (hBMECs), the key functional component of the BBB, intracellular trafficking were evaluated by confocal live-cell imaging. The exocytosed liposomes, including naturally-occurring extracellular vesicles (EVs), were collected using differential centrifugation and and characterised regarding the EV yield, morphology and EVs origin using nanoparticle tracking analysis, transmission electron microscopy and flow cytometry. The transcytosis of liposomes through a verified BBB model comprising of hBMECs monolayer was also quantified. GSH-PEG-L was initially retained in the endo-lysosomes before exocytosed while packed in EVs of different sizes (<100 â€‹nm to >1 â€‹µm) while GSH-PEG-pSL underwent endosome escape with less degree of exocytosis with more fluorescence remaining in the cytoplasm. Compared with the untreated, hBMECs treated with GSH-PEG-L increased the yield of nano-EV and medium-EV by 7.9-fold and 4.6-fold, respectively. Conversely, GSH-pSL-treated cells produced 2.9-fold more nano-EVs but 2-fold less medium-EVs than the control cells. These vesicles were CD144-positive confirming their endothelial cell-origin. GSH-PEG-L demonstrated 2-fold higher efficiencies than GSH-PEG-pSL to cross the in vitro BBB model via exocytosis. Taken together, GSH-PEG-L might utilize EV secretion pathway to achieve transcytosis across brain endothelial cells of the BBB while liposomal pH-sensitivity favors cytoplasmic delivery.

11.
J Neuroinflammation ; 18(1): 189, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465372

RESUMEN

BACKGROUND: Increased systemic and tissue levels of interleukin (IL)-1ß are associated with greater risk of impaired neurodevelopment after birth. In this study, we tested the hypothesis that systemic IL-1 receptor antagonist (Ra) administration would attenuate brain inflammation and injury in near-term fetal sheep exposed to lipopolysaccharide (LPS). METHODS: Chronically instrumented near-term fetal sheep at 0.85 of gestation were randomly assigned to saline infusion (control, n = 9), repeated LPS infusions (0 h = 300 ng, 24 h = 600 ng, 48 h = 1200 ng, n = 8) or repeated LPS plus IL-1Ra infusions (13 mg/kg infused over 4 h) started 1 h after each LPS infusion (n = 9). Sheep were euthanized 4 days after starting infusions for histology. RESULTS: LPS infusions increased circulating cytokines and were associated with electroencephalogram (EEG) suppression with transiently reduced mean arterial blood pressure, and increased carotid artery perfusion and fetal heart rate (P < 0.05 vs. control for all). In the periventricular and intragyral white matter, LPS-exposure increased IL-1ß immunoreactivity, numbers of caspase 3+ cells and microglia, reduced astrocyte and olig-2+ oligodendrocyte survival but did not change numbers of mature CC1+ oligodendrocytes, myelin expression or numbers of neurons in the cortex and subcortical regions. IL-1Ra infusions reduced circulating cytokines and improved recovery of EEG activity and carotid artery perfusion. Histologically, IL-1Ra reduced microgliosis, IL-1ß expression and caspase-3+ cells, and improved olig-2+ oligodendrocyte survival. CONCLUSION: IL-1Ra improved EEG activity and markedly attenuated systemic inflammation, microgliosis and oligodendrocyte loss following LPS exposure in near-term fetal sheep. Further studies examining the long-term effects on brain maturation are now needed.


Asunto(s)
Encéfalo/efectos de los fármacos , Encefalitis/tratamiento farmacológico , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Lipopolisacáridos/farmacología , Oligodendroglía/efectos de los fármacos , Sustancia Blanca/efectos de los fármacos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encefalitis/metabolismo , Encefalitis/patología , Femenino , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Oligodendroglía/metabolismo , Oligodendroglía/patología , Embarazo , Ovinos , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
12.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205464

RESUMEN

BACKGROUND: Toll-like receptor (TLR) agonists are key immunomodulatory factors that can markedly ameliorate or exacerbate hypoxic-ischemic brain injury. We recently demonstrated that central infusion of the TLR7 agonist Gardiquimod (GDQ) following asphyxia was highly neuroprotective after 3 days but not 7 days of recovery. We hypothesize that this apparent transient neuroprotection is associated with modulation of seizure-genic processes and hemodynamic control. METHODS: Fetuses received sham asphyxia or asphyxia induced by umbilical cord occlusion (20.9 ± 0.5 min) and were monitored continuously for 7 days. GDQ 3.34 mg or vehicle were infused intracerebroventricularly from 1 to 4 h after asphyxia. RESULTS: GDQ infusion was associated with sustained moderate hypertension that resolved after 72 h recovery. Electrophysiologically, GDQ infusion was associated with reduced number and burden of postasphyxial seizures in the first 18 h of recovery (p < 0.05). Subsequently, GDQ was associated with induction of slow rhythmic epileptiform discharges (EDs) from 72 to 96 h of recovery (p < 0.05 vs asphyxia + vehicle). The total burden of EDs was associated with reduced numbers of neurons in the caudate nucleus (r2 = 0.61, p < 0.05) and CA1/2 hippocampal region (r2 = 0.66, p < 0.05). CONCLUSION: These data demonstrate that TLR7 activation by GDQ modulated blood pressure and suppressed seizures in the early phase of postasphyxial recovery, with subsequent prolonged induction of epileptiform activity. Speculatively, this may reflect delayed loss of early protection or contribute to differential neuronal survival in subcortical regions.


Asunto(s)
Aminoquinolinas/uso terapéutico , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Imidazoles/uso terapéutico , Convulsiones/prevención & control , Receptor Toll-Like 7/agonistas , Aminoquinolinas/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Electroencefalografía , Femenino , Terapias Fetales/métodos , Hipoxia-Isquemia Encefálica/complicaciones , Imidazoles/farmacología , Embarazo , Nacimiento Prematuro , Convulsiones/etiología , Ovinos
13.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924540

RESUMEN

Despite the prevalence of preterm brain injury, there are no established neuroprotective strategies to prevent or alleviate mild-to-moderate inflammation-related brain injury. Perinatal infection and inflammation have been shown to trigger acute neuroinflammation, including proinflammatory cytokine release and gliosis, which are associated with acute and chronic disturbances in brain cell survival and maturation. These findings suggest the hypothesis that the inhibition of peripheral immune responses following infection or nonspecific inflammation may be a therapeutic strategy to reduce the associated brain injury and neurobehavioral deficits. This review provides an overview of the neonatal immunity, neuroinflammation, and mechanisms of inflammation-related brain injury in preterm infants and explores the safety and efficacy of anti-inflammatory agents as potentially neurotherapeutics.


Asunto(s)
Antiinflamatorios/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/inmunología , Citocinas/metabolismo , Humanos , Recién Nacido , Recien Nacido Prematuro , Inflamación/complicaciones , Modelos Biológicos
14.
J Dev Orig Health Dis ; 12(2): 153-167, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955011

RESUMEN

Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.


Asunto(s)
Investigación Biomédica/tendencias , Diagnóstico por Imagen/métodos , Enfermedades Fetales/diagnóstico , Feto/patología , Femenino , Enfermedades Fetales/diagnóstico por imagen , Feto/diagnóstico por imagen , Humanos , Embarazo , Sociedades Científicas
15.
Brain Behav Immun ; 94: 338-356, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33307171

RESUMEN

Severe postnatal systemic infection is highly associated with persistent disturbances in brain development and neurobehavioral outcomes in survivors of preterm birth. However, the contribution of less severe but prolonged postnatal infection and inflammation to such disturbances is unclear. Further, the ability of modern imaging techniques to detect the underlying changes in cellular microstructure of the brain in these infants remains to be validated. We used high-field ex-vivo MRI, neurohistopathology, and behavioral tests in newborn rats to demonstrate that prolonged postnatal systemic inflammation causes subtle, persisting disturbances in brain development, with neurodevelopmental delays and mild motor impairments. Diffusion-tensor MRI and neurite orientation dispersion and density imaging (NODDI) revealed delayed maturation of neocortical and subcortical white matter microstructure. Analysis of pyramidal neurons showed that the cortical deficits involved impaired dendritic arborization and spine formation. Analysis of oligodendrocytes showed that the white matter deficits involved impaired oligodendrocyte maturation and axonal myelination. These findings indicate that prolonged postnatal inflammation, without severe infection, may critically contribute to the diffuse spectrum of brain pathology and subtle long-term disability in preterm infants, with a cellular mechanism involving oligodendrocyte and neuronal dysmaturation. NODDI may be useful for clinical detection of these microstructural deficits.


Asunto(s)
Neocórtex , Nacimiento Prematuro , Sustancia Blanca , Animales , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Inflamación , Neocórtex/diagnóstico por imagen , Embarazo , Ratas , Sustancia Blanca/diagnóstico por imagen
16.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255257

RESUMEN

Progressive fetal infection/inflammation is strongly associated with neural injury after preterm birth. We aimed to test the hypotheses that progressively developing fetal inflammation leads to neuroinflammation and impaired white matter development and that the histopathological changes can be detected using high-field diffusion tensor magnetic resonance imaging (MRI). Chronically instrumented preterm fetal sheep at 0.7 of gestation were randomly assigned to receive intravenous saline (control; n = 6) or a progressive infusion of lipopolysaccharide (LPS, 200 ng intravenous over 24 h then doubled every 24 h for 5 days to induce fetal inflammation, n = 7). Sheep were killed 10 days after starting the infusions, for histology and high-field diffusion tensor MRI. Progressive LPS infusion was associated with increased circulating interleukin (IL)-6 concentrations and moderate increases in carotid artery perfusion and the frequency of electroencephalogram (EEG) activity (p < 0.05 vs. control). In the periventricular white matter, fractional anisotropy (FA) was increased, and orientation dispersion index (ODI) was reduced (p < 0.05 vs. control for both). Histologically, in the same brain region, LPS infusion increased microglial activation and astrocyte numbers and reduced the total number of oligodendrocytes with no change in myelination or numbers of immature/mature oligodendrocytes. Numbers of astrocytes in the periventricular white matter were correlated with increased FA and reduced ODI signal intensities. Astrocyte coherence was associated with increased FA. Moderate astrogliosis, but not loss of total oligodendrocytes, after progressive fetal inflammation can be detected with high-field diffusion tensor MRI.


Asunto(s)
Gliosis/diagnóstico por imagen , Inflamación/diagnóstico por imagen , Leucoencefalopatías/diagnóstico por imagen , Imagen por Resonancia Magnética , Animales , Gliosis/fisiopatología , Gliosis/veterinaria , Inflamación/fisiopatología , Inflamación/veterinaria , Leucoencefalopatías/fisiopatología , Leucoencefalopatías/veterinaria , Ovinos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiopatología
17.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899855

RESUMEN

Perinatal hypoxia-ischemia is associated with disruption of cortical gamma-aminobutyric acid (GABA)ergic interneurons and their surrounding perineuronal nets, which may contribute to persisting neurological deficits. Blockade of connexin43 hemichannels using a mimetic peptide can alleviate seizures and injury after hypoxia-ischemia. In this study, we tested the hypothesis that connexin43 hemichannel blockade improves the integrity of cortical interneurons and perineuronal nets. Term-equivalent fetal sheep received 30 min of bilateral carotid artery occlusion, recovery for 90 min, followed by a 25-h intracerebroventricular infusion of vehicle or a mimetic peptide that blocks connexin hemichannels or by a sham ischemia + vehicle infusion. Brain tissues were stained for interneuronal markers or perineuronal nets. Cerebral ischemia was associated with loss of cortical interneurons and perineuronal nets. The mimetic peptide infusion reduced loss of glutamic acid decarboxylase-, calretinin-, and parvalbumin-expressing interneurons and perineuronal nets. The interneuron and perineuronal net densities were negatively correlated with total seizure burden after ischemia. These data suggest that the opening of connexin43 hemichannels after perinatal hypoxia-ischemia causes loss of cortical interneurons and perineuronal nets and that this exacerbates seizures. Connexin43 hemichannel blockade may be an effective strategy to attenuate seizures and may improve long-term neurological outcomes after perinatal hypoxia-ischemia.


Asunto(s)
Conexina 43/efectos de los fármacos , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Péptidos/farmacología , Animales , Biomimética/métodos , Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral/tratamiento farmacológico , Conexina 43/antagonistas & inhibidores , Conexina 43/metabolismo , Conexinas/antagonistas & inhibidores , Conexinas/metabolismo , Matriz Extracelular/metabolismo , Femenino , Feto/metabolismo , Hipoxia/fisiopatología , Infusiones Intraventriculares , Interneuronas/metabolismo , Masculino , Parvalbúminas/metabolismo , Péptidos/administración & dosificación , Embarazo , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología , Convulsiones/prevención & control , Ovinos
18.
Front Neurol ; 11: 449, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32536903

RESUMEN

There is an important unmet need to improve long term outcomes of encephalopathy for preterm and term infants. Meta-analyses of large controlled trials suggest that maternal treatment with magnesium sulfate (MgSO4) is associated with a reduced risk of cerebral palsy and gross motor dysfunction after premature birth. However, to date, follow up to school age has found an apparent lack of long-term clinical benefit. Because of this inconsistency, it remains controversial whether MgSO4 offers sustained neuroprotection. We systematically reviewed preclinical and clinical studies reported from January 1 2010, to January 31 2020 to evaluate the most recent advances and knowledge gaps relating to the efficacy of MgSO4 for the treatment of perinatal brain injury. The outcomes of MgSO4 in preterm and term-equivalent animal models of perinatal encephalopathy were highly inconsistent between studies. None of the perinatal rodent studies that suggested benefit directly controlled body or brain temperature. The majority of the studies did not control for sex, study long term histological and functional outcomes or use pragmatic treatment regimens and many did not report controlling for potential study bias. Finally, most of the recent preterm or term human studies that tested the potential of MgSO4 for perinatal neuroprotection were relatively underpowered, but nevertheless, suggest that any improvements in neurodevelopment were at best modest or absent. On balance, these data suggest that further rigorous testing in translational preclinical models of perinatal encephalopathy is essential to ensure safety and best regimens for optimal preterm neuroprotection, and before further clinical trials of MgSO4 for perinatal encephalopathy at term are undertaken.

19.
J Neuroinflammation ; 17(1): 92, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32293473

RESUMEN

BACKGROUND: Increased circulating levels of tumor necrosis factor (TNF) are associated with greater risk of impaired neurodevelopment after preterm birth. In this study, we tested the hypothesis that systemic TNF inhibition, using the soluble TNF receptor Etanercept, would attenuate neuroinflammation in preterm fetal sheep exposed to lipopolysaccharide (LPS). METHODS: Chronically instrumented preterm fetal sheep at 0.7 of gestation were randomly assigned to receive saline (control; n = 7), LPS infusion (100 ng/kg i.v. over 24 h then 250 ng/kg/24 h for 96 h plus 1 µg LPS boluses at 48, 72, and 96 h, to induce inflammation; n = 8) or LPS plus two i.v. infusions of Etanercept (2 doses, 5 mg/kg infused over 30 min, 48 h apart) started immediately before LPS-exposure (n = 8). Sheep were killed 10 days after starting infusions, for histology. RESULTS: LPS boluses were associated with increased circulating TNF, interleukin (IL)-6 and IL-10, electroencephalogram (EEG) suppression, hypotension, tachycardia, and increased carotid artery perfusion (P < 0.05 vs. control). In the periventricular and intragyral white matter, LPS exposure increased gliosis, TNF-positive cells, total oligodendrocytes, and cell proliferation (P < 0.05 vs control), but did not affect myelin expression or numbers of neurons in the cortex and subcortical regions. Etanercept delayed the rise in circulating IL-6, prolonged the increase in IL-10 (P < 0.05 vs. LPS), and attenuated EEG suppression, hypotension, and tachycardia after LPS boluses. Histologically, Etanercept normalized LPS-induced gliosis, and increase in TNF-positive cells, proliferation, and total oligodendrocytes. CONCLUSION: TNF inhibition markedly attenuated white matter gliosis but did not affect mature oligodendrocytes after prolonged systemic inflammation in preterm fetal sheep. Further studies of long-term brain maturation are now needed.


Asunto(s)
Gliosis/tratamiento farmacológico , Mediadores de Inflamación/antagonistas & inhibidores , Nacimiento Prematuro/tratamiento farmacológico , Inhibidores del Factor de Necrosis Tumoral/administración & dosificación , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Sustancia Blanca/efectos de los fármacos , Animales , Etanercept/administración & dosificación , Femenino , Feto , Gliosis/metabolismo , Mediadores de Inflamación/metabolismo , Infusiones Intravenosas , Embarazo , Nacimiento Prematuro/metabolismo , Ovinos , Factor de Necrosis Tumoral alfa/metabolismo , Sustancia Blanca/metabolismo
20.
Pediatr Int ; 62(7): 770-778, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32119180

RESUMEN

Therapeutic hypothermia is now well established to partially reduce disability in term and near-term infants with moderate-severe hypoxic-ischemic encephalopathy. Preclinical and clinical studies have confirmed that current protocols for therapeutic hypothermia are near optimal. The challenge is now to identify complementary therapies that can further improve outcomes, in combination with therapeutic hypothermia. Overall, anti-excitatory and anti-apoptotic agents have shown variable or even no benefit in combination with hypothermia, suggesting overlapping mechanisms of neuroprotection. Inflammation appears to play a critical role in the pathogenesis of injury in the neonatal brain, and thus, there is potential for drugs with immunomodulatory properties that target inflammation to be used as a therapy in neonates. In this review, we examine the evidence for neuroprotection with immunomodulation after hypoxia-ischemia. For example, stem cell therapy can reduce inflammation, increase cell survival, and promote cell maturation and repair. There are also encouraging preclinical data from small animals suggesting that stem cell therapy can augment hypothermic neuroprotection. However, there is conflicting evidence, and rigorous testing in translational animal models is now needed.


Asunto(s)
Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica/terapia , Inmunomodulación , Animales , Antiinflamatorios/uso terapéutico , Lesiones Encefálicas/terapia , Frío , Terapia Combinada , Humanos , Hipoxia-Isquemia Encefálica/complicaciones , Factores Inmunológicos/uso terapéutico , Recién Nacido , Inflamación/complicaciones , Inflamación/terapia , Neuroprotección , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA