Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(1): 168-181, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38109842

RESUMEN

Reconstruction of critical sized bone defects in the oral and maxillofacial region continues to be clinically challenging despite the significant development of osteo-regenerative materials. Among 3D biomaterials, hydrogels and hydrogel composites have been explored for bone regeneration, however, their inferior clinical performance in comparison to autografts is mainly attributed to variable rates of degradation and lack of vascularization. In this study, we report hydrogel composite magnetic scaffolds formed from calcium carbonate, poly(vinyl alcohol) (PVA), and magnetic nanoparticles (MNPs), using PVA as matrix and calcium carbonate particles in vaterite phase as filler, to enhance the cross-linking of matrix and porosity with MNPs that can target and regulate cell signaling pathways to control cell behavior and improve the osteogenic and angiogenic potential. The physical and mechanical properties were evaluated, and cytocompatibility was investigated by culturing human osteoblast-like cells onto the scaffolds. The vaterite phase due to its higher solubility in comparison to calcium phosphates, combined with the freezing-thawing process of PVA, yielded porous scaffolds that exhibited adequate thermal stability, favorable water-absorbing capacity, excellent mineralization ability, and cytocompatibility. An increasing concentration from 1, 3, and 6 wt % MNPs in the scaffolds showed a statistically significant increase in compressive strength and modulus of the dry specimens that exhibited brittle fracture. However, the hydrated specimens were compressible and showed a slight decrease in compressive strength with 6% MNPs, although this value was higher compared to that of the scaffolds with no MNPs.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Hidrogeles , Carbonato de Calcio , Fenómenos Magnéticos
2.
J Clin Exp Dent ; 15(2): e102-e109, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36911149

RESUMEN

Background: This study aimed to develop remineralizing calcium-phosphate (CaP) etchant pastes for enamel conditioning before bracket bonding and evaluate the bonding performance, failure pattern, and enamel surface integrity post bracket debonding in comparison with the conventional phosphoric acid (PA) etchant gel. Material and Methods: Micro-sized monocalcium phosphate monohydrate and hydroxyapatite (micro- and nano-sized) powders were mixed with various phosphoric and nitric acid concentrations to develop eight acidic CaP pastes. Ninety extracted human premolars were randomly assigned into eight experimental and one control group (n=10). The developed pastes and control (commercial 37% PA-gel) were applied onto the enamel using the etch-and-rinse protocol before bonding metal brackets. Shear bond strength and adhesive remnant index (ARI) scores were evaluated after 24 hours water storage (24 h) and post 5000 thermocycling (TC). Field emission scanning electron microscopy (FE-SEM) was used to evaluate enamel damage after bracket debonding. Results: The developed CaP pastes, excepting MNA1 and MPA1, resulted in significantly lower SBS values and ARI scores than 37% PA gel. Etching with 37% PA yielded roughened, cracked enamel surfaces with excessive retention of adhesive residue. In contrast, enamel treatment with the experimental pastes exhibited smooth, unblemished surfaces, with obvious CaP re-precipitation induced by mHPA2 and nHPA2 pastes and to a lesser extent by MPA2 paste. Conclusions: Three newly developed CaP etchant pastes (MPA2, mHPA2, and nHPA2) can be promising alternative enamel conditioners that outperform conventional PA by generating adequate bracket bond strengths besides precipitating CaP crystals on the enamel. Moreover, these pastes maintained unblemished enamel surfaces with no or minimal adhesive residue after bracket removal. Key words:Enamel Conditioning, Calcium Phosphate, Bracket Bond Strength, Orthodontic Bonding, enamel damage.

3.
J Dent ; 132: 104501, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36967082

RESUMEN

OBJECTIVES: Bonded restorations using self-etch (SE) systems exhibit a limited lifespan due to their susceptibility to hydrolytic, enzymatic or fatigue degradation and poor performance on enamel. This study was conducted to develop and assess the performance of a two-step SE system using a functional monomer bis[2-(methacryloyloxy)ethyl]phosphate (BMEP) and demonstrate a strategy to enhance stability of bonded resin composite restorations to both enamel and dentine. METHODS: A two-step SE system was formulated with a primer containing BMEP, with an adhesive with or without BMEP, and compared to a commercial 10-MDP-containing system, ClearfilTM SE Bond 2 (CFSE). The systems were evaluated on enamel for surface roughness and microshear bond strength (µSBS) and on dentine for microtensile bond strength (µTBS), nanoleakage, MMP inhibition and cyclic flexural fatigue. RESULTS: Whilst all bonding systems resulted in statistically similar µSBS, BMEP-based primers yielded greater enamel surface roughness than the CFSE primer. The BMEP-free adhesives resulted in statistically similar or higher µTBS and lower nanoleakage compared to CFSE. In situ zymography revealed minimal to no MMP activity within the hybrid layer of BMEP-based systems. The BMEP-free adhesive exhibited flexural strength and fatigue resistance statistically similar to CFSE. CONCLUSIONS: Incorporation of BMEP in the primer led to satisfactory bond strengths with both enamel and dentine, potentially eliminating the need for selective enamel etching. Combined with an adhesive formulation that is solvent-free and hydrophobic, and confining the acidic functional monomer in the primer resulted in minimal interfacial leakage, and resistance to proteolytic degradation and the cyclic nature of chewing. CLINICAL SIGNIFICANCE: The SE bonding system containing BMEP combines the potent etching of phosphoric acid with the therapeutic function of the phosphate-based monomer in creating a homogenous hybrid layer with protection against endogenous proteolytic enzymes. This strategy may overcome current challenges that arise during selective enamel etching.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos Dentales , Recubrimientos Dentinarios/química , Cementos de Resina/química , Propiedades de Superficie , Péptido Hidrolasas , Fosfatos , Ensayo de Materiales , Resistencia a la Tracción
4.
ACS Appl Mater Interfaces ; 14(48): 53593-53602, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36413629

RESUMEN

Although fused deposition modeling (FDM) has made it possible to create reproducible three-dimensional poly(lactic acid) (PLA) scaffolds, their efficacy for tissue engineering applications is limited by their lack of osteoinductive properties and antibacterial functions. Building on the success of the FDM constructs capable of supporting bone regeneration, we report here on the development of PLA scaffolds infused with sodium alginate cross-linked with both calcium and zinc divalent cations. Zn2+ cations were used to confer antibacterial and osteoinductive properties to enhance the performance of nontoxic PLA-alginate. Both the PLA and alginate polymers have been approved by the US Food and Drug Administration. In vivo bone regeneration capacity was demonstrated on a rabbit model by tomography and histological analysis. The scaffolds exhibited antibacterial activity against Gram-positive methicillin-resistant Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa, while the control scaffolds could not resist the two microbial species tested. The scaffolds' physical properties were evaluated by field emission scanning electron microscopy with energy-disperse X-ray spectroscopy, Fourier transform infrared spectroscopy, water absorption, porosity measurements, and compression tests in dry and swollen states at body temperature. Their superior compressive properties, water uptake, and osteoinductive and antibacterial activities thus make them promising candidates for bone tissue regeneration.


Asunto(s)
Alginatos , Staphylococcus aureus Resistente a Meticilina , Estados Unidos , Conejos , Animales , Alginatos/farmacología , Agua
5.
Dent Mater ; 38(6): 1030-1043, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35473789

RESUMEN

OBJECTIVE: The tooth-resin composite interface is frequently associated with failure because of microbial contamination, hydrolytic and collagenolytic degradation. Thus, designing a dentine bonding system (DBS) with an intrinsically antimicrobial polymerisable monomer is of significance especially if it can be used with self-etching primers enabling resistance to degradation of the interface. METHODS: Experimental adhesives were developed incorporating eugenyl methacrylate (EgMA) at concentrations of 0,10 or 20 wt%, designated as EgMA0, EgMA10 and EgMA20, respectively, for use as a two-step self-etch DBS with the functional monomer bis[2-(methacryloyloxy) ethyl] phosphate (BMEP) in the primer. The curing, thermal and wettability properties of the adhesives were determined, and hybrid layer formation was characterised by confocal laser scanning microscopy, microtensile bond strengths (µTBS) and nanoleakage by back-scattered SEM. In situ zymography was used to assess MMP inhibitory activity of the BMEP-EgMA DBS. RESULTS: EgMA in the adhesives lowered the polymerisation exotherm and resulted in higher Tg, without negatively affecting degree of conversion. Water sorption and solubility were significantly lower with higher concentrations of EgMA in the adhesive. The formation of a distinct hybrid layer was evident from confocal images with the different adhesives, whilst EgMA20 yielded the highest µTBS post water storage challenges and lowest nanoleakage after 6 months. The experimental DBS exhibited minimal to no MMP activity at 3 months. SIGNIFICANCE: The hydrophobic nature of EgMA and high cross-link density exerts considerable benefits in lowering water uptake and polymerisation exotherm. The application of EgMA, adhesives in conjunction with BMEP in a multi-functional self-etching DBS can resist MMP activity, hence, enhance longevity of the dentine-resin composite interface.


Asunto(s)
Recubrimiento Dental Adhesivo , Recubrimientos Dentinarios , Resinas Compuestas/química , Cementos Dentales , Dentina , Recubrimientos Dentinarios/química , Ensayo de Materiales , Metaloproteinasas de la Matriz , Metacrilatos , Fosfatos , Cementos de Resina/química , Resistencia a la Tracción , Agua/química
6.
Nanomaterials (Basel) ; 12(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269245

RESUMEN

Large bone defects with limited intrinsic regenerative potential represent a major surgical challenge and are associated with a high socio-economic burden and severe reduction in the quality of life. Tissue engineering approaches offer the possibility to induce new functional bone regeneration, with the biomimetic scaffold serving as a bridge to create a microenvironment that enables a regenerative niche at the site of damage. Magnetic nanoparticles have emerged as a potential tool in bone tissue engineering that leverages the inherent magnetism of magnetic nano particles in cellular microenvironments providing direction in enhancing the osteoinductive, osteoconductive and angiogenic properties in the design of scaffolds. There are conflicting opinions and reports on the role of MNPs on these scaffolds, such as the true role of magnetism, the application of external magnetic fields in combination with MNPs, remote delivery of biomechanical stimuli in-vivo and magnetically controlled cell retention or bioactive agent delivery in promoting osteogenesis and angiogenesis. In this review, we focus on the role of magnetic nanoparticles for bone-tissue-engineering applications in both disease modelling and treatment of injuries and disease. We highlight the materials-design pathway from implementation strategy through the selection of materials and fabrication methods to evaluation. We discuss the advances in this field and unmet needs, current challenges in the development of ideal materials for bone-tissue regeneration and emerging strategies in the field.

7.
J Dent ; 118: 104050, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35081422

RESUMEN

OBJECTIVES: To assess the performance of a novel resin-modified glass-ionomer cement (pRMGIC) bonded to various tooth tissues after two-time intervals. METHODS: 192 sound human molars were randomly assigned to 3 groups (n = 64): sound enamel, demineralised enamel, sound dentine. Sixty-four teeth with natural carious lesions including caries-affected dentine (CAD) were selected. All substrates were prepared, conditioned and restored with pRMGIC (30% ethylene glycol methacrylate phosphate (EGMP, experimental), Fuji II LC (control), Fuji IX, and Filtek™ Supreme with Scotchbond ™ Universal Adhesive. Shear bond strength (SBS) was determined after 24 h and three months storage in SBF at 37 °C. The debonded surfaces were examined using stereomicroscopy and scanning electron microscopy (SEM). Multivariate Analysis of Variance (MANOVA), Bonferroni post hoc tests (alpha=0.05) and independent T-tests were used for multifactorial data analysis. RESULTS: The hydrophilicity and functionality of EGMP enhanced the bond strength of the pRMGIC to different substrates after 24 h and 3 months as compared to F2LC (p<0.05). Adhesive failures were found to decrease with pRMGIC and integration into exposed enamel prisms and dentine tubules was observed with SEM. Ageing enhanced bond strength of pRMGIC to all substrates but was statistically significantly only in sound dentine. The SBS of pRMGIC was higher with sound vs. demineralised enamel at both time periods (p<0.001), while it was higher to CAD initially and to sound dentine post-storage (p = 0.004). CONCLUSIONS: pRMGIC exhibited enhanced bonding performance to various tooth tissues with an ability to seal exposed enamel prisms and dentine tubules. CLINICAL SIGNIFICANCE: pRMGIC is a promising material exhibiting long-lasting bonded-tooth interfaces, for its use in minimally invasive reparative techniques.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos Dentales , Esmalte Dental , Análisis del Estrés Dental , Dentina , Cementos de Ionómero Vítreo/química , Humanos , Ensayo de Materiales , Cementos de Resina/química , Resistencia al Corte
8.
Bioengineering (Basel) ; 8(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34436110

RESUMEN

Despite considerable advances in biomaterials-based bone tissue engineering technologies, autografts remain the gold standard for rehabilitating critical-sized bone defects in the oral and maxillofacial (OMF) region. A majority of advanced synthetic bone substitutes (SBS's) have not transcended the pre-clinical stage due to inferior clinical performance and translational barriers, which include low scalability, high cost, regulatory restrictions, limited advanced facilities and human resources. The aim of this study is to develop clinically viable alternatives to address the challenges of bone tissue regeneration in the OMF region by developing 'dual network composites' (DNC's) of calcium metaphosphate (CMP)-poly(vinyl alcohol) (PVA)/alginate with osteogenic ions: calcium, zinc and strontium. To fabricate DNC's, single network composites of PVA/CMP with 10% (w/v) gelatine particles as porogen were developed using two freeze-thawing cycles and subsequently interpenetrated by guluronate-dominant sodium alginate and chelated with calcium, zinc or strontium ions. Physicochemical, compressive, water uptake, thermal, morphological and in vitro biological properties of DNC's were characterised. The results demonstrated elastic 3D porous scaffolds resembling a 'spongy bone' with fluid absorbing capacity, easily sculptable to fit anatomically complex bone defects, biocompatible and osteoconductive in vitro, thus yielding potentially clinically viable for SBS alternatives in OMF surgery.

9.
BDJ Open ; 6: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32821430

RESUMEN

OBJECTIVES: The last decade has seen a variety of modifications of glass-ionomer cements (GICs), such as inclusion of bioactive glass particles and dispensing systems. Hence, the aim was to systematically evaluate effect of mixing modes and presence of reactive glass additives on the physical properties of several GICs. MATERIALS AND METHODS: The physical properties of eight commercial restorative GICs; Fuji IX GP Extra (C&H), KetacTM Fill Plus Applicap (C&H), Fuji II LC (C&H), Glass Carbomer Cement and Equia® Forte Fil, capsulated versus manually mixed were assessed. 256 cylindrical specimens were prepared for compressive strength and microhardness, whilst 128 disc-shaped specimens were prepared for biaxial flexural strength tests. Fluid uptake and fluoride release were assessed. Data were analysed using one-way ANOVA and Games-Howell post-hoc tests (alpha = 0.05). RESULTS: Both encapsulated GIC/RMGICs exhibited significantly improved mechanical properties in comparison to manually mixed equivalents, which in turn showed higher fluid uptake and early fluoride release (p < 0.05). The glass carbomer cement exhibited improved mechanical properties post ageing and evidence of mineral deposits were apparent in the microstructure. CONCLUSIONS: The mixing mode and inclusion of reactive glass additives in cements had a statistically significant effect on physical properties of the selected GICs-RMGICs.

10.
J Clin Med ; 9(9)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32846942

RESUMEN

PURPOSE: This study compared the antimicrobial efficacy of calcium silicate sealers (BioRoot RCS and Total Fill BC) and conventional sealers (AH Plus and Tubli-seal) against planktonic bacteria and a nutrient-stressed multispecies biofilm. METHODS: Antimicrobial properties of freshly mixed sealers were investigated using the direct contact test (DCT) and a nutrient-stressed multispecies biofilm comprised of five endodontic strains. Antimicrobial activity was determined using quantitative viable counts and confocal laser scanning microscopy (CLSM) analysis with live/dead staining. The pH of the sealers was analysed over a period of 28 days in Hanks Balanced Salt Solution (HBSS). Analysis of variance (ANOVA) with Tukey tests and the Kruskal-Wallis test were used for data analysis with a significance of 5%. RESULTS: All endodontic sealers exhibited significant antimicrobial activity against planktonic bacteria (p < 0.05). BioRoot RCS caused a significant reduction in viable counts of the biofilms compared to AH Plus and the control (p < 0.05), while no significant difference could be observed compared to TotalFill BC and Tubli-seal (p > 0.05). CLSM analysis showed that BioRoot RCS and TotalFill BC exhibited significant biofilm inhibition compared to Tubli-seal, AH Plus and the control (p < 0.05). BioRoot RCS presented with the highest microbial killing, followed by TotalFill BC and Tubli-seal. Alkalizing activity was seen from the onset by BioRoot RCS, TotalFill BC and AH Plus. After 28 days, BioRoot RCS demonstrated the highest pH in HBSS (pH > 12). CONCLUSIONS: Calcium silicate sealers exhibited effective antimicrobial properties. This was demonstrated by superior biofilm inhibition capacity and microbial killing, with strong alkalizing activity compared to epoxy-based and zinc oxide-eugenol-based sealers.

11.
J Dent ; 98: 103359, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380133

RESUMEN

OBJECTIVES: To assess the surface characteristics and composition that may enhance osteoblasts viability on novel electrospun composite membranes (organic polymer/silicon dioxide nanoparticles). METHODS: Membranes are composed by a novel polymer blend, the mixture of two hydrophilic copolymers 2-hydroxyethylmethacrylate-co-methylmethacrylate and 2-hydroxyethylacrylate-co-methylacrylate, and they are doped with silicon dioxide nanoparticles. Then the membranes were functionalized with zinc or doxycycline. The membranes were morphologically characterized by atomic force and scanning electron microscopy (FESEM), and mechanically probed using a nanoindenter. Biomimetic calcium phosphate precipitation on polymeric tissues was assessed. Cell viability tests were performed using human osteosarcoma cells. Cells morphology was also studied by FESEM. Data were analyzed by ANOVA, Student-Newman-Keuls and Student t tests (p < 0.05). RESULTS: Silica doping of membranes enhanced bioactivity and increased mechanical properties. Membranes morphology and mechanical properties were similar to those of trabecular bone. Zinc and doxycycline doping did not exert changes but it increased novel membranes bioactivity. Membranes were found to permit osteoblasts proliferation. Silica-doping favored cells proliferation and spreading. As soon as 24 h after the seeding, cells in silica-doped membranes were firmly attached to experimental tissues trough filopodia, connected to each other. The cells produced collagen and minerals onto the surfaces. CONCLUSIONS: Silica nanoparticles enhanced surface properties and osteoblasts viability on electrospun membranes. CLINICAL SIGNIFICANCE: The ability of silica-doped matrices to promote precipitation of calcium phosphate, together with their mechanical properties, observed non-toxicity, stimulating effect on osteoblasts and its surface chemistry allowing covalent binding of proteins, offer a potential strategy for bone regeneration applications.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Materiales Biocompatibles/farmacología , Proliferación Celular , Colágeno , Humanos , Osteoblastos , Dióxido de Silicio , Ingeniería de Tejidos , Andamios del Tejido
12.
J Clin Exp Dent ; 12(4): e317-e326, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32382380

RESUMEN

BACKGROUND: This in vitro study compares a novel calcium-phosphate etchant paste to conventional 37% phosphoric acid gel for bonding metal and ceramic brackets by evaluating the shear bond strength, remnant adhesive and enamel damage following water storage, acid challenge and fatigue loading. MATERIAL AND METHODS: Metal and ceramic brackets were bonded to 240 extracted human premolars using two enamel conditioning protocols: conventional 37% phosphoric acid (PA) gel (control), and an acidic calcium-phosphate (CaP) paste. The CaP paste was prepared from ß-tricalcium phosphate and monocalcium phosphate monohydrate powders mixed with 37% phosphoric acid solution, and the resulting phase was confirmed using FTIR. The bonded premolars were exposed to four artificial ageing models to examine the shear bond strength (SBS), adhesive remnant index (ARI score), with stereomicroscopic evaluation of enamel damage. RESULTS: Metal and ceramic control subgroups yielded significantly higher (p < 0.05) SBS (17.1-31.8 MPa) than the CaP subgroups (11.4-23.8 MPa) post all artificial ageing protocols, coupled with higher ARI scores and evidence of enamel damage. In contrast, the CaP subgroups survived all artificial ageing tests by maintaining adequate SBS for clinical performance, with the advantages of leaving unblemished enamel surface and bracket failures at the enamel-adhesive interface. CONCLUSIONS: Enamel conditioning with acidic CaP pastes attained adequate bond strengths with no or minimal adhesive residue and enamel damage, suggesting a suitable alternative to the conventional PA gel for orthodontic bonding. Key words:Enamel etching, calcium phosphate, bracket bond strength, adhesive residue, enamel damage.

13.
Br Dent J ; 228(7): 527-532, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32277211

RESUMEN

Objectives The aim of this in vitro study was to evaluate the effects of five different two-step diamond impregnated polishing systems (Sof-Lex Spiral, Venus Supra, Komet Spiral, CompoMaster and Shapeguard) on the surface roughness and morphology of a submicron hybrid composite resin material (Brilliant Everglow).Materials and methods Two-hundred composite resin discs were prepared with 180 SiC paper to produce a uniform baseline surface. The samples were randomly assigned to one of five groups and polishing was completed by one operator. The arithmetic mean surface roughness (Ra) was measured using contact profilometry and the surfaces were examined under an SEM.Results Statistical differences (p <0.05) were identified between the surface roughness remaining after use of the polishers. Diatech Shapeguard (0.22 µm, SD 0.08) and Komet Spiral (0.26 µm, SD 0.09) polishers yielded the lowest Ra values, while the CompoMaster polishing system led to the highest surface roughness values (0.55 µm, SD 0.19).Conclusions Within the limits of this in vitro study of the efficacy of diamond impregnated two-step polishing systems, Diatech Shapeguard and Komet Spiral polishing systems produced the lowest surface roughness values. These polishing systems yielded acceptable surface roughness values with regards to oral health and patient comfort.Clinical relevance Similarly designed polishing systems do not produce comparable surface roughness levels and clinicians should be aware of this when considering polishing protocols for composite restorations.


Asunto(s)
Resinas Compuestas , Pulido Dental , Materiales Dentales , Humanos , Ensayo de Materiales , Propiedades de Superficie
14.
J Clin Exp Dent ; 12(1): e22-e30, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31976040

RESUMEN

BACKGROUND: This in vitro study compares a self-etch primer (SEP) to an etch-and-rinse (EaR) for bonding sapphire brackets by evaluation of the enamel etch-pattern, shear bond strength, amount of remnant adhesive and enamel surface damage following thermal and fatigue cyclic loading. MATERIAL AND METHODS: Ceramic (sapphire) brackets were bonded to 80 extracted human premolars using two enamel etching protocols: conventional EaR using 37% phosphoric acid (PA) gel (control), and a SEP (Transbond Plus). Each group was subdivided into two subgroups (n=20 teeth) according to the time of bracket debonding: after 24 h water storage or following 5000 thermo-cycles plus 5000 cycles fatigue loading, to determine the shear bond strength (SBS), adhesive remnant index (ARI score), with scanning electron microscopy (SEM) evaluation of enamel condition. RESULTS: The control subgroups consistently exhibited significantly higher (p<0.05) SBS mean values (23.4-29.8 MPa) than the SEP subgroups (15.1-22.4 MPa) at both bracket debonding time points. However, the SEP subgroups yielded milder etch-patterns and attained SBS values above the minimum requirement range for clinical performance. In addition, the higher SBS of control subgroups was accompanied with higher ARI scores and enamel damage grades than SEP subgroups as confirmed by SEM. Thermocycling and fatigue significantly reduced the SBS of all subgroups, with a non-significant drop in the amount of adhesive residue or enamel damage. CONCLUSIONS: The use of SEP can be a suitable alternative to the conventional PA gel for sapphire bracket bonding as it maintains suitable bond strength and has the potential to produce both less remnant adhesive and enamel damage. Key words:Enamel etching, ceramic brackets, orthodontic bonding, adhesive remnants, enamel damage.

15.
J Mater Sci Mater Med ; 30(10): 114, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31598796

RESUMEN

Inspired by the double network hydrogel systems we report the formulation of dual networks, which expands the repertoire of this class of materials for potential biomedical applications. The tough dual network hydrogels were designed through sequential interpenetrating polymer formation, applying green chemistry and low-cost methods, devoid of any initiator-activator complexes that may pose risks in biomedical applications. The dual networks were synthesized in two steps, firstly the water soluble poly(vinyl alcohol) was subjected to cryogelation that formed the first network, which was then expanded by intrusion of a dilute solution of sodium alginate and complexed with a solution of calcium chloride under ambient conditions and further freeze-thawed. These hydrogels are flexible, ductile and porous with the ability to absorb and retain fluids as well as possess the versatility to easily incorporate biological molecules/drugs/antibiotics to be applied in tissue matrices or drug delivery systems. The dual network hydrogels can be tailored to have varying mechanical properties, shapes, size, thickness and particularly can be made physically porous if required, to suit the users intended application.


Asunto(s)
Materiales Biocompatibles/química , Hidrogeles/química , Osteoblastos/efectos de los fármacos , Polímeros/química , Alginatos/química , Antibacterianos/química , Cloruro de Calcio/química , Rastreo Diferencial de Calorimetría , Adhesión Celular , Sistemas de Liberación de Medicamentos , Matriz Extracelular/metabolismo , Curación de Fractura , Tecnología Química Verde , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Alcohol Polivinílico/química , Polivinilos/química , Porosidad , Medicina Regenerativa/métodos , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Resistencia a la Tracción , Vancomicina/química , Agua/química
16.
Dent Mater ; 35(11): 1614-1629, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31530433

RESUMEN

OBJECTIVE: The deleterious caustic effects of sodium hypochlorite (NaOCl) as a root canal irrigant makes it imperative that alternative methods are developed for root canal disinfection. The purpose of this study was to examine the antimicrobial efficacy of silver nanoparticles (AgNPs) synthesized on an aqueous graphene oxide (GO) matrix (Ag-GO), with different irrigant delivery methods to enhance the disinfection regimen, using a novel ex vivo infected tooth model. METHODS: AgNPs were prepared by reducing AgNO3 with 0.01M NaBH4 in presence of GO. Elemental analysis was performed with scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and scanning transmission electron microscopy (STEM) was used for size and morphology analysis of GO and Ag-GO. Nutrient stressed, multi-species biofilms were grown in prepared root canals of single-rooted teeth. The irrigants used were sterile saline, 1% and 2.5% NaOCl, 2% chlorhexidine gluconate (CHX), 17% EDTA and an aqueous suspension of 0.25% Ag-GO. The antimicrobial efficacy of the irrigants were performed with paper point sampling and measurement of microbial counts. The biofilm disruption in dentine tubule surfaces was analysed with confocal laser scanning microscopy (CLSM). The acquisition of total biovolume (µm3/µm2) and biofilm viability was performed using software BioImage_L. Two-way analysis of variance (ANOVA) with post hoc Tukey tests was used for data analysis with level of statistical significance set at P<0.05. RESULTS: SEM/EDS analysis confirmed impregnation of Ag within the GO matrix. TEM images showed polygonal GO sheets and spherical AgNPs of diameter 20-50nm, forming a network on the surface of GO sheets. The use of ultrasonic activation enhanced the efficacy of Ag-GO compared to 1% NaOCl, 2% CHX, 17% EDTA and sterile saline (P<0.05). The microbial killing efficacy of 2.5% NaOCl was superior compared to the experimental groups. The maximum biofilm disruption, in dentine tubule surfaces, was achieved by 2.5% NaOCl, however Ag-GO caused a significant reduction of total biovolumes compared to the rest of the experimental groups (P<0.05%). SIGNIFICANCE: The successful documentation of the microbial killing and biofilm disruption capacity of Ag-GO is a promising step forward to explore its unique properties in clinical applications and biomaterials in dentistry.


Asunto(s)
Nanopartículas del Metal , Plata , Biopelículas , Cavidad Pulpar , Enterococcus faecalis , Grafito
18.
Dent Mater J ; 38(4): 511-521, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31270293

RESUMEN

This study evaluates the reinforcement of semi-interpenetrating network composites of 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropyl)phenyl] propane (Bis-GMA)/ triethyleneglycol dimethacrylate (TEGDMA)/polymethyl methacrylate (PMMA) and 25% titanium dioxide (TiO2) nanofiller with surface treated Kevlar fibers for potential application as dental posts. The post material was subjected to thermo-cycling and flexural strength determined, characterised by dynamic mechanical analysis, water sorption, radiopacity and cytotoxicity tests. The results were compared with everStick®POST. Kevlar pre-treatment with acetic acid and silane coupling agent demonstrated a clear effect on the flexural strength of the composites with a significant increase compared to composites with fibers without surface treatment. The inclusion of TiO2 into the final formulation provided the desired radiopacity and improved both aesthetics and flexural strength, which exhibits a higher resistance on thermocycling. The ratios of fatigue limit to static flexural strength were about 0.73 for Kevlar and 0.58 for everStick®POST; MTT assay confirmed the absence of any toxic eluents, indicating its feasibility as new intracanal post material.


Asunto(s)
Estética Dental , Técnica de Perno Muñón , Bisfenol A Glicidil Metacrilato , Resinas Compuestas , Materiales Dentales , Ensayo de Materiales , Docilidad , Polietilenglicoles , Ácidos Polimetacrílicos , Silanos
19.
Dent Mater ; 35(4): 636-649, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30819551

RESUMEN

OBJECTIVE: Glass-ionomer and resin-modified glass-ionomer cements are versatile materials with the ability to form a direct bond with tooth tissues. The aim of this study was to formulate a novel class of dental bio-interactive restorative material (pRMGIC) based on resin-modified glass-ionomer cements via the inclusion of an organophosphorus monomer, ethylene glycol methacrylate phosphate, with a potential to improve the mechanical properties and also function as a reparative restorative material. METHODS: pRMGIC was formulated with modification of the resin phase by forming mixes of ethylene glycol methacrylate phosphate (EGMP; 0-40%wt) and 2-hydroxyethyl methacrylate monomer into the liquid phase of a RMGIC (Fuji II LC, GC Corp.). The physical properties of the cements were determined including setting characteristics, compressive strength and modulus (CS &CM), microhardness (MH) and biaxial flexural strength (BFS). Fluid uptake and fluoride release were assessed up to 60 days storage. Adhesion to sound dentine was measured using micro-tensile bond strength and surface integrity was analysed using SEM coupled with EDX. Statistical analysis was performed using ANOVA and Bonferroni post-hoc tests. RESULTS: The pRMGIC cements exhibited an increase in working time with increasing EGMP concentration however were within the limits of standard clinical requirements. Although the compressive strength of pRMGIC cements were comparable to control cements in the early stages of maturation, the higher EGMP-containing cements (EGMP30 and 40) exhibited significantly greater values (p < 0.05) after 4 weeks storage (141.0 ± 9 and 140.4 ± 8 MPa, respectively), in comparison to EGMP0 (128.8 ± 7 MPa). A dramatic two fold increase in biaxial flexural strength (p < 0.001) was observed for the pRMGIC's. Furthermore, the ability to decalcify tooth apatite resulted in enhanced interfacial adhesion due to chelation with calcium ions of tooth apatite. The inclusion of EGMP encouraged formation of reinforcing complexes within the RMGIC, thus improving physical properties, decreasing solubility and lower fluoride release. A dense microstructure was observed with increasing EGMP content. SIGNIFICANCE: A novel universal bio-interactive adhesive repair material will enable clinicians to offer more effective repair of the tooth-restoration complex, thus future treatments will benefit both patient and a severely constrained healthcare budget.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos Dentales , Materiales Dentales , Cementos de Ionómero Vítreo , Humanos , Ensayo de Materiales , Cementos de Resina , Resistencia a la Tracción
20.
PLoS One ; 13(9): e0198649, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30199524

RESUMEN

Root canal irrigation with sodium hypochlorite (NaOCl) is an indispensable part of the chemomechanical preparation of infected root canals in Endodontology. However, there is limited information on the emergence of toxic or hazardous volatile compounds (VOCs) from the interaction of NaOCl with the infected content of tooth biomaterials. The aim of this study was to assess the formation of VOCs and disinfection by-products (DBPs) following the interaction of NaOCl 2.5% v/v with a model system of different sources of natural organic matter (NOM) present in infected root canals, including dentine powder, planktonic multi-microbial suspensions (Propionibacterium acnes, Staphylococcus epidermidis, Actinomyces radicidentis, Streptococcus mitis and Enterococcus faecalis strain OMGS3202), bovine serum albumin 4%w/v and their combination. NaOCl was obtained from a stock solution with iodometric titration. Ultrapure water served as negative control. Samples were stirred at 37°C in aerobic and anaerobic conditions for 30min to approximate a clinically realistic time. Centrifugation was performed and the supernatants were collected and stored at -800 C until analysis. The reaction products were analysed in real time by selected ion flow tube mass spectrometry (SIFT-MS) in triplicates. SIFT-MS analysis showed that the released VOCs included chlorinated hydrocarbons, particularly chloroform, together with unexpected higher levels of some nitrogenous compounds, especially acetonitrile. No difference was observed between aerobic and anaerobic conditions. The chemical interaction of NaOCl with NOM resulted in the formation of toxic chlorinated VOCs and DBPs. SIFT-MS analysis proved to be an effective analytical method. The risks from the rise of toxic compounds require further consideration in dentistry.


Asunto(s)
Sustancias Peligrosas/análisis , Irrigantes del Conducto Radicular/química , Hipoclorito de Sodio/química , Compuestos Orgánicos Volátiles/análisis , Bacterias/química , Desinfección/métodos , Humanos , Espectrometría de Masas/métodos , Preparación del Conducto Radicular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...