Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 29(5): 1274-1286.e6, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665639

RESUMEN

Muscle function is regulated by Ca2+, which mediates excitation-contraction coupling, energy metabolism, adaptation to exercise, and sarcolemmal repair. Several of these actions rely on Ca2+ delivery to the mitochondrial matrix via the mitochondrial Ca2+ uniporter, the pore of which is formed by mitochondrial calcium uniporter (MCU). MCU's gatekeeping and cooperative activation are controlled by MICU1. Loss-of-protein mutation in MICU1 causes a neuromuscular disease. To determine the mechanisms underlying the muscle impairments, we used MICU1 patient cells and skeletal muscle-specific MICU1 knockout mice. Both these models show a lower threshold for MCU-mediated Ca2+ uptake. Lack of MICU1 is associated with impaired mitochondrial Ca2+ uptake during excitation-contraction, aerobic metabolism impairment, muscle weakness, fatigue, and myofiber damage during physical activity. MICU1 deficit compromises mitochondrial Ca2+ uptake during sarcolemmal injury, which causes ineffective repair of the damaged myofibers. Thus, dysregulation of mitochondrial Ca2+ uptake hampers myofiber contractile function, likely through energy metabolism and membrane repair.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Debilidad Muscular/metabolismo , Sarcolema/patología , Síndrome Debilitante/metabolismo , Adolescente , Adulto , Animales , Señalización del Calcio , Proteínas de Unión al Calcio/deficiencia , Proteínas de Transporte de Catión/deficiencia , Membrana Celular/metabolismo , Citosol/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Homeostasis , Humanos , Masculino , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Modelos Biológicos , Contracción Muscular , Debilidad Muscular/complicaciones , Debilidad Muscular/patología , Músculo Esquelético/metabolismo , Atrofia Muscular/complicaciones , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Sarcolema/metabolismo , Tétanos , Síndrome Debilitante/complicaciones , Síndrome Debilitante/patología
2.
J Cell Sci ; 131(23)2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30404834

RESUMEN

Mitochondria respond to stress and undergo fusion and fission at variable rates, depending on cell status. To understand mitochondrial behavior during muscle fatigue, we investigated mitochondrial ultrastructure and expression levels of a fission- and stress-related protein in fast-twitch muscle fibers of mice subjected to fatigue testing. Mice were subjected to running at increasing speed until exhaustion at 45 min-1 h. In further experiments, high-intensity muscle stimulation through the sciatic nerve simulated the forced treadmill exercise. We detected a rare phenotype characterized by elongated mitochondrial constrictions (EMCs) connecting two separate segments of the original organelles. EMCs are rare in resting muscles and their frequency increases, albeit still at low levels, in stimulated muscles. The constrictions are accompanied by elevated phosphorylation of Drp1 (Dnm1l) at Ser 616, indicating an increased translocation of Drp1 to the mitochondrial membrane. This is indicative of a mitochondrial stress response, perhaps leading to or facilitating a long-lasting fission event. A close apposition of sarcoplasmic reticulum (SR) to the constricted areas, detected using both transmission and scanning electron microscopy, is highly suggestive of SR involvement in inducing mitochondrial constrictions.


Asunto(s)
Fatiga Muscular/fisiología , Músculo Esquelético/metabolismo , Animales , Ratones , Mitocondrias/metabolismo
3.
Pharmacol Res ; 138: 43-56, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30219582

RESUMEN

Parkin, an E3 ubiquitin ligase and a Parkinson's disease (PD) related gene, translocates to impaired mitochondria and drives their elimination via autophagy, a process known as mitophagy. Mitochondrial pro-fusion protein Mitofusins (Mfn1 and Mfn2) were found to be a target for Parkin mediated ubiquitination. Mfns are transmembrane GTPase embedded in the outer membrane of mitochondria, which are required on adjacent mitochondria to mediate fusion. In mammals, Mfn2 also forms complexes that are capable of tethering mitochondria to endoplasmic reticulum (ER), a structural feature essential for mitochondrial energy metabolism, calcium (Ca2+) transfer between the organelles and Ca2+ dependent cell death. Despite its fundamental physiological role, the molecular mechanisms that control ER-mitochondria cross talk are obscure. Ubiquitination has recently emerged as a powerful tool to modulate protein function, via regulation of protein subcellular localization and protein ability to interact with other proteins. Ubiquitination is also a reversible mechanism, which can be actively controlled by opposing ubiquitination-deubiquitination events. In this work we found that in Parkin deficient cells and parkin mutant human fibroblasts, the tether between ER and mitochondria is decreased. We identified the site of Parkin dependent ubiquitination and showed that the non-ubiquitinatable Mfn2 mutant fails to restore ER-mitochondria physical and functional interaction. Finally, we took advantage of an established in vivo model of PD to demonstrate that manipulation of ER-mitochondria tethering by expressing an ER-mitochondria synthetic linker is sufficient to rescue the locomotor deficit associated to an in vivo Drosophila model of PD.


Asunto(s)
Retículo Endoplásmico/fisiología , GTP Fosfohidrolasas/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Enfermedad de Parkinson/fisiopatología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Drosophila , Femenino , Fibroblastos/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Persona de Mediana Edad , Interferencia de ARN , ARN Interferente Pequeño/genética , Ubiquitinación
4.
Cell Rep ; 21(6): 1667-1680, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29117569

RESUMEN

Mitochondrial distribution and motility are recognized as central to many cellular functions, but their regulation by signaling mechanisms remains to be elucidated. Here, we report that reactive oxygen species (ROS), either derived from an extracellular source or intracellularly generated, control mitochondrial distribution and function by dose-dependently, specifically, and reversibly decreasing mitochondrial motility in both rat hippocampal primary cultured neurons and cell lines. ROS decrease motility independently of cytoplasmic [Ca2+], mitochondrial membrane potential, or permeability transition pore opening, known effectors of oxidative stress. However, multiple lines of genetic and pharmacological evidence support that a ROS-activated mitogen-activated protein kinase (MAPK), p38α, is required for the motility inhibition. Furthermore, anchoring mitochondria directly to kinesins without involvement of the physiological adaptors between the organelles and the motor protein prevents the H2O2-induced decrease in mitochondrial motility. Thus, ROS engage p38α and the motor adaptor complex to exert changes in mitochondrial motility, which likely has both physiological and pathophysiological relevance.


Asunto(s)
Mitocondrias/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Antracenos/farmacología , Calcio/metabolismo , Células Cultivadas , Ciclosporina/farmacología , Peróxido de Hidrógeno/farmacología , MAP Quinasa Quinasa Quinasa 5/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Ratas , Superóxido Dismutasa/metabolismo , Imagen de Lapso de Tiempo , Vitamina K 3/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
Cell Rep ; 18(10): 2291-2300, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28273446

RESUMEN

Mitochondrial Ca2+ uptake through the Ca2+ uniporter supports cell functions, including oxidative metabolism, while meeting tissue-specific calcium signaling patterns and energy needs. The molecular mechanisms underlying tissue-specific control of the uniporter are unknown. Here, we investigated a possible role for tissue-specific stoichiometry between the Ca2+-sensing regulators (MICUs) and pore unit (MCU) of the uniporter. Low MICU1:MCU protein ratio lowered the [Ca2+] threshold for Ca2+ uptake and activation of oxidative metabolism but decreased the cooperativity of uniporter activation in heart and skeletal muscle compared to liver. In MICU1-overexpressing cells, MICU1 was pulled down by MCU proportionally to MICU1 overexpression, suggesting that MICU1:MCU protein ratio directly reflected their association. Overexpressing MICU1 in the heart increased MICU1:MCU ratio, leading to liver-like mitochondrial Ca2+ uptake phenotype and cardiac contractile dysfunction. Thus, the proportion of MICU1-free and MICU1-associated MCU controls these tissue-specific uniporter phenotypes and downstream Ca2+ tuning of oxidative metabolism.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Especificidad de Órganos , Femenino , Humanos , Hígado/metabolismo , Músculos/metabolismo , Miocardio/metabolismo , Oxidación-Reducción
6.
Proc Natl Acad Sci U S A ; 114(5): E849-E858, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096415

RESUMEN

Exchanges of matrix contents are essential to the maintenance of mitochondria. Cardiac mitochondrial exchange matrix content in two ways: by direct contact with neighboring mitochondria and over longer distances. The latter mode is supported by thin tubular protrusions, called nanotunnels, that contact other mitochondria at relatively long distances. Here, we report that cardiac myocytes of heterozygous mice carrying a catecholaminergic polymorphic ventricular tachycardia-linked RyR2 mutation (A4860G) show a unique and unusual mitochondrial response: a significantly increased frequency of nanotunnel extensions. The mutation induces Ca2+ imbalance by depressing RyR2 channel activity during excitation-contraction coupling, resulting in random bursts of Ca2+ release probably due to Ca2+ overload in the sarcoplasmic reticulum. We took advantage of the increased nanotunnel frequency in RyR2A4860G+/- cardiomyocytes to investigate and accurately define the ultrastructure of these mitochondrial extensions and to reconstruct the overall 3D distribution of nanotunnels using electron tomography. Additionally, to define the effects of communication via nanotunnels, we evaluated the intermitochondrial exchanges of matrix-targeted soluble fluorescent proteins, mtDsRed and photoactivable mtPA-GFP, in isolated cardiomyocytes by confocal microscopy. A direct comparison between exchanges occurring at short and long distances directly demonstrates that communication via nanotunnels is slower.


Asunto(s)
Señalización del Calcio/fisiología , Mitocondrias Cardíacas/fisiología , Animales , Acoplamiento Excitación-Contracción/fisiología , Ratones , Microscopía Confocal , Microscopía Electrónica , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/ultraestructura , Dinámicas Mitocondriales/fisiología , Mutagénesis Sitio-Dirigida , Mutación Missense , Canal Liberador de Calcio Receptor de Rianodina/deficiencia , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Taquicardia Ventricular/genética
7.
Am J Pathol ; 185(1): 266-79, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25529796

RESUMEN

Prostatic intraepithelial neoplasia is a precursor to prostate cancer. Herein, deletion of the NAD(+)-dependent histone deacetylase Sirt1 induced histological features of prostatic intraepithelial neoplasia at 7 months of age; these features were associated with increased cell proliferation and enhanced mitophagy. In human prostate cancer, lower Sirt1 expression in the luminal epithelium was associated with poor prognosis. Genetic deletion of Sirt1 increased mitochondrial superoxide dismutase 2 (Sod2) acetylation of lysine residue 68, thereby enhancing reactive oxygen species (ROS) production and reducing SOD2 activity. The PARK2 gene, which has several features of a tumor suppressor, encodes an E3 ubiquitin ligase that participates in removal of damaged mitochondria via mitophagy. Increased ROS in Sirt1(-/-) cells enhanced the recruitment of Park2 to the mitochondria, inducing mitophagy. Sirt1 restoration inhibited PARK2 translocation and ROS production requiring the Sirt1 catalytic domain. Thus, the NAD(+)-dependent inhibition of SOD2 activity and ROS by SIRT1 provides a gatekeeper function to reduce PARK2-mediated mitophagy and aberrant cell survival.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mitocondrias/metabolismo , Mitofagia , Neoplasia Intraepitelial Prostática/metabolismo , Sirtuina 1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células 3T3 , Animales , Supervivencia Celular , Genotipo , Histona Desacetilasas/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Estrés Oxidativo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(35): E3631-40, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136135

RESUMEN

Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Paraplejía/genética , Proteínas de Unión al GTP rho/genética , Adenosina Trifosfato/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Transporte Axonal/fisiología , Calcio/metabolismo , Respiración de la Célula/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Neuronas Motoras/metabolismo , Paraplejía/metabolismo , Paraplejía/patología , Fenotipo , Proteínas de Unión al GTP rho/metabolismo
9.
Curr Opin Cell Biol ; 29: 133-41, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24999559

RESUMEN

Endoplasmic reticulum (ER) and mitochondria are functionally distinct with regard to membrane protein biogenesis and oxidative energy production, respectively, but cooperate in several essential cell functions, including lipid biosynthesis, cell signaling and organelle dynamics. The interorganellar cooperation requires local communication that can occur at the strategically positioned and dynamic associations between ER and mitochondria. Calcium is locally transferred from ER to mitochondria at the associations and exerts regulatory effects on numerous proteins. A common Ca(2+) sensing mechanism is the EF-hand Ca(2+) binding domain, many of which can be found in proteins of the mitochondria, including Miro1&2, MICU1,2&3, LETM1 and mitochondrial solute carriers. Recently, these proteins have triggered much interest and were described in reports with diverging conclusions. The present essay focuses on their shared features and established specific functions.


Asunto(s)
Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/química , Humanos
10.
J Cell Biol ; 204(3): 303-12, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24469638

RESUMEN

Ablation of the mitochondrial fusion and endoplasmic reticulum (ER)-tethering protein Mfn2 causes ER stress, but whether this is just an epiphenomenon of mitochondrial dysfunction or a contributor to the phenotypes in mitofusin (Mfn)-depleted Drosophila melanogaster is unclear. In this paper, we show that reduction of ER dysfunction ameliorates the functional and developmental defects of flies lacking the single Mfn mitochondrial assembly regulatory factor (Marf). Ubiquitous or neuron- and muscle-specific Marf ablation was lethal, altering mitochondrial and ER morphology and triggering ER stress that was conversely absent in flies lacking the fusion protein optic atrophy 1. Expression of Mfn2 and ER stress reduction in flies lacking Marf corrected ER shape, attenuating the developmental and motor defects. Thus, ER stress is a targetable pathogenetic component of the phenotypes caused by Drosophila Mfn ablation.


Asunto(s)
Proteínas de Drosophila/deficiencia , Drosophila melanogaster/metabolismo , Estrés del Retículo Endoplásmico , Proteínas de la Membrana/deficiencia , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Prueba de Complementación Genética , Humanos , Locomoción/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fenilbutiratos/farmacología , Interferencia de ARN , Ácido Tauroquenodesoxicólico/farmacología
11.
Mol Cell Neurosci ; 55: 77-86, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22940086

RESUMEN

In developed countries, increased life expectancy is accompanied by an increased prevalence of age-related disorders like cancer and neurodegenerative diseases. Albeit the molecular mechanisms behind the clinically, pathologically and etiologically heterogeneous forms of neurodegeneration are often unclear, impairment of mitochondrial fusion-fission and dynamics emerged in recent years as a feature of neuronal dysfunction and death, pinpointing the need for animal models to investigate the relationship between mitochondrial shape and neurodegeneration. While research on mammalian models is slowed down by the complexity of the organisms and their genomes, the long latency of the symptoms and by the difficulty to generate and analyze large cohorts, the lower metazoan Drosophila melanogaster overcomes these problems, proving to be a suitable model to study neurodegenerative diseases and mitochondria-shaping proteins. Here we will summarize our current knowledge on the link between mitochondrial shape and models of neurodegeneration in the fruitfly. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Mitocondrias/patología , Enfermedades Neurodegenerativas/metabolismo , Animales , Apoptosis , Drosophila melanogaster/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/genética
12.
BMC Cancer ; 11: 351, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21838870

RESUMEN

BACKGROUND: RASSF1A gene silencing by DNA methylation has been suggested as a major event in pancreatic endocrine tumor (PET) but RASSF1A expression has never been studied. The RASSF1 locus contains two CpG islands (A and C) and generates seven transcripts (RASSF1A-RASSF1G) by differential promoter usage and alternative splicing. METHODS: We studied 20 primary PETs, their matched normal pancreas and three PET cell lines for the (i) methylation status of the RASSF1 CpG islands using methylation-specific PCR and pyrosequencing and (ii) expression of RASSF1 isoforms by quantitative RT-PCR in 13 cases. CpG island A methylation was evaluated by methylation-specific PCR (MSP) and by quantitative methylation-specific PCR (qMSP); pyrosequencing was applied to quantify the methylation of 51 CpGs also encompassing those explored by MSP and qMSP approaches. RESULTS: MSP detected methylation in 16/20 (80%) PETs and 13/20 (65%) normal pancreas. At qMSP, 11/20 PETs (55%) and 9/20 (45%) normals were methylated in at least 20% of RASSF1A alleles.Pyrosequencing showed variable distribution and levels of methylation within and among samples, with PETs having average methylation higher than normals in 15/20 (75%) cases (P = 0.01). The evaluation of mRNA expression of RASSF1 variants showed that: i) RASSF1A was always expressed in PET and normal tissues, but it was, on average, expressed 6.8 times less in PET (P = 0.003); ii) RASSF1A methylation inversely correlated with its expression; iii) RASSF1 isoforms were rarely found, except for RASSF1B that was always expressed and RASSF1C whose expression was 11.4 times higher in PET than in normal tissue (P = 0.001). A correlation between RASSF1A expression and gene methylation was found in two of the three PET cell lines, which also showed a significant increase in RASSF1A expression upon demethylating treatment. CONCLUSIONS: RASSF1A gene methylation in PET is higher than normal pancreas in no more than 75% of cases and as such it cannot be considered a marker for this neoplasm. RASSF1A is always expressed in PET and normal pancreas and its levels are inversely correlated with gene methylation. Isoform RASSF1C is overexpressed in PET and the recent demonstration of its involvement in the regulation of the Wnt pathway points to a potential pathogenetic role in tumor development.


Asunto(s)
Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Proteínas Supresoras de Tumor/genética , Adulto , Anciano , Azacitidina/análogos & derivados , Estudios de Casos y Controles , Línea Celular Tumoral , Islas de CpG , Decitabina , Regulación hacia Abajo , Exones , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/metabolismo , Isoformas de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Estadísticas no Paramétricas , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...