Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 118(2): 519-533, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38184778

RESUMEN

Precise regulation of flowering time is critical for cereal crops to synchronize reproductive development with optimum environmental conditions, thereby maximizing grain yield. The plant-specific gene GIGANTEA (GI) plays an important role in the control of flowering time, with additional functions on the circadian clock and plant stress responses. In this study, we show that GI loss-of-function mutants in a photoperiod-sensitive tetraploid wheat background exhibit significant delays in heading time under both long-day (LD) and short-day photoperiods, with stronger effects under LD. However, this interaction between GI and photoperiod is no longer observed in isogenic lines carrying either a photoperiod-insensitive allele in the PHOTOPERIOD1 (PPD1) gene or a loss-of-function allele in EARLY FLOWERING 3 (ELF3), a known repressor of PPD1. These results suggest that the normal circadian regulation of PPD1 is required for the differential effect of GI on heading time in different photoperiods. Using crosses between mutant or transgenic plants of GI and those of critical genes in the flowering regulation pathway, we show that GI accelerates wheat heading time by promoting FLOWERING LOCUS T1 (FT1) expression via interactions with ELF3, VERNALIZATION 2 (VRN2), CONSTANS (CO), and the age-dependent microRNA172-APETALA2 (AP2) pathway, at both transcriptional and protein levels. Our study reveals conserved GI mechanisms between wheat and Arabidopsis but also identifies specific interactions of GI with the distinctive photoperiod and vernalization pathways of the temperate grasses. These results provide valuable knowledge for modulating wheat heading time and engineering new varieties better adapted to a changing environment.


Asunto(s)
Relojes Circadianos , Triticum , Triticum/fisiología , Flores , Fotoperiodo , Genes de Plantas/genética , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas/genética
2.
Proc Natl Acad Sci U S A ; 120(38): e2306494120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37703281

RESUMEN

Wheat is an important contributor to global food security, and further improvements are required to feed a growing human population. Functional genetics and genomics tools can help us to understand the function of different genes and to engineer beneficial changes. In this study, we used a promoter capture assay to sequence 2-kb regions upstream of all high-confidence annotated genes from 1,513 mutagenized plants from the tetraploid wheat variety Kronos. We identified 4.3 million induced mutations with an accuracy of 99.8%, resulting in a mutation density of 41.9 mutations per kb. We also remapped Kronos exome capture reads to Chinese Spring RefSeq v1.1, identified 4.7 million mutations, and predicted their effects on annotated genes. Using these predictions, we identified 59% more nonsynonymous substitutions and 49% more truncation mutations than in the original study. To show the biological value of the promoter dataset, we selected two mutations within the promoter of the VRN-A1 vernalization gene. Both mutations, located within transcription factor binding sites, significantly altered VRN-A1 expression, and one reduced the number of spikelets per spike. These publicly available sequenced mutant datasets provide rapid and inexpensive access to induced variation in the promoters and coding regions of most wheat genes. These mutations can be used to understand and modulate gene expression and phenotypes for both basic and commercial applications, where limited governmental regulations can facilitate deployment. These mutant collections, together with gene editing, provide valuable tools to accelerate functional genetic studies in this economically important crop.


Asunto(s)
Regiones Promotoras Genéticas , Triticum , Bioensayo , Expresión Génica , Mutación , Triticum/genética
3.
Front Plant Sci ; 14: 1135047, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275249

RESUMEN

An efficient genetic transformation protocol is necessary to edit genes for trait improvement directly in elite bread wheat cultivars. We used a protein fusion between a wheat growth-regulating factor 4 (GRF4) and its interacting factor (GIF1) to develop a reproducible genetic transformation and regeneration protocol, which we then used to successfully transform elite bread wheat cultivars Baj, Kachu, Morocco, Reedling, RL6077, and Sujata in addition to the experimental cultivar Fielder. Immature embryos were transformed with the vector using particle bombardment method. Transformation frequency increased nearly 60-fold with the GRF4-GIF1-containing vectors as compared to the control vector and ranged from ~5% in the cultivar Kachu to 13% in the cultivar RL6077. We then edited two genes that confer resistance against leaf rust and powdery mildew directly in the aforementioned elite cultivars. A wheat promoter, TaU3 or TaU6, to drive the expression of guide RNA was effective in gene editing whereas the OsU3 promoter failed to generate any edits. Editing efficiency was nearly perfect with the wheat promoters. Our protocol has made it possible to edit genes directly in elite wheat cultivars and would be useful for gene editing in other wheat varieties, which have been recalcitrant to transformation thus far.

4.
BMC Plant Biol ; 23(1): 270, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37211599

RESUMEN

BACKGROUND: The genetic information contained in the genome of an organism is organized in genes and regulatory elements that control gene expression. The genomes of multiple plants species have already been sequenced and the gene repertory have been annotated, however, cis-regulatory elements remain less characterized, limiting our understanding of genome functionality. These elements act as open platforms for recruiting both positive- and negative-acting transcription factors, and as such, chromatin accessibility is an important signature for their identification. RESULTS: In this work we developed a transgenic INTACT [isolation of nuclei tagged in specific cell types] system in tetraploid wheat for nuclei purifications. Then, we combined the INTACT system together with the assay for transposase-accessible chromatin with sequencing [ATAC-seq] to identify open chromatin regions in wheat root tip samples. Our ATAC-seq results showed a large enrichment of open chromatin regions in intergenic and promoter regions, which is expected for regulatory elements and that is similar to ATAC-seq results obtained in other plant species. In addition, root ATAC-seq peaks showed a significant overlap with a previously published ATAC-seq data from wheat leaf protoplast, indicating a high reproducibility between the two experiments and a large overlap between open chromatin regions in root and leaf tissues. Importantly, we observed overlap between ATAC-seq peaks and cis-regulatory elements that have been functionally validated in wheat, and a good correlation between normalized accessibility and gene expression levels. CONCLUSIONS: We have developed and validated an INTACT system in tetraploid wheat that allows rapid and high-quality nuclei purification from root tips. Those nuclei were successfully used to performed ATAC-seq experiments that revealed open chromatin regions in the wheat genome that will be useful to identify cis-regulatory elements. The INTACT system presented here will facilitate the development of ATAC-seq datasets in other tissues, growth stages, and under different growing conditions to generate a more complete landscape of the accessible DNA regions in the wheat genome.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Plantones , Plantones/genética , Triticum/genética , Reproducibilidad de los Resultados , Tetraploidía , Cromatina/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
5.
Plant Genome ; 16(1): e20296, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484157

RESUMEN

As genome resources for wheat (Triticum L.) expand at a rapid pace, it is important to update targeted sequencing tools to incorporate improved sequence assemblies and regions of previously unknown significance. Here, we developed an updated regulatory region enrichment capture for wheat and other Triticeae species. The core target space includes sequences from 2-Kbp upstream of each gene predicted in the Chinese Spring wheat genome (IWGSC RefSeq Annotation v1.0) and regions of open chromatin identified with an assay for transposase-accessible chromatin using sequencing from wheat leaf and root samples. To improve specificity, we aggressively filtered candidate repetitive sequences using a combination of nucleotide basic local alignment search tool (BLASTN) searches to the Triticeae Repetitive Sequence Database (TREP), identification of regions with read over-coverage from previous target enrichment experiments, and k-mer frequency analyses. The final design comprises 216.5 Mbp of predicted hybridization space in hexaploid wheat and showed increased specificity and coverage of targeted sequences relative to previous protocols. Test captures on hexaploid and tetraploid wheat and other diploid cereals show that the assay has broad potential utility for cost-effective promoter and open chromatin resequencing and general-purpose genotyping of various Triticeae species.


Asunto(s)
Genoma de Planta , Triticum , Triticum/genética , Análisis Costo-Beneficio , Poliploidía , Regiones Promotoras Genéticas , Cromatina
6.
Nat Plants ; 8(12): 1343-1351, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36522447

RESUMEN

Agriculture is experiencing a technological inflection point in its history, while also facing unprecedented challenges posed by human population growth and global climate changes. Key advancements in precise genome editing and new methods for rapid generation of bioengineered crops promise to both revolutionize the speed and breadth of breeding programmes and increase our ability to feed and sustain human population growth. Although genome editing enables targeted and specific modifications of DNA sequences, several existing barriers prevent the widespread adoption of editing technologies for basic and applied research in established and emerging crop species. Inefficient methods for the transformation and regeneration of recalcitrant species and the genotype dependency of the transformation process remain major hurdles. These limitations are frequent in monocotyledonous crops, which alone provide most of the calories consumed by human populations. Somatic embryogenesis and de novo induction of meristems - pluripotent groups of stem cells responsible for plant developmental plasticity - are essential strategies to quickly generate transformed plants. Here we review recent discoveries that are rapidly advancing nuclear transformation technologies and promise to overcome the obstacles that have so far impeded the widespread adoption of genome editing in crop species.


Asunto(s)
Genoma de Planta , Fitomejoramiento , Humanos , Fitomejoramiento/métodos , Edición Génica/métodos , Productos Agrícolas/genética , Agricultura
7.
Nat Plants ; 8(5): 457-458, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35596078
8.
PLoS Genet ; 18(4): e1010157, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35468125

RESUMEN

Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In the temperate cereals, wheat and barley, the photoperiod and vernalization pathways explain most of the natural variation in flowering time. However, other pathways also participate in fine-tuning the flowering response. In this work, we integrate the conserved microRNA miR172 and its targets APETALA2-like (AP2L) genes into the temperate grass flowering network involving VERNALIZATION 1 (VRN1), VRN2 and FLOWERING LOCUS T 1 (FT1 = VRN3) genes. Using mutants, transgenics and different growing conditions, we show that miR172 promotes flowering in wheat, while its target genes AP2L1 (TaTOE1) and AP2L5 (Q) act as flowering repressors. Moreover, we reveal that the miR172-AP2L pathway regulates FT1 expression in the leaves, and that this regulation is independent of VRN2 and VRN1. In addition, we show that the miR172-AP2L module and flowering are both controlled by plant age through miR156 in spring cultivars. However, in winter cultivars, flowering and the regulation of AP2L1 expression are decoupled from miR156 downregulation with age, and induction of VRN1 by vernalization is required to repress AP2L1 in the leaves and promote flowering. Interestingly, the levels of miR172 and both AP2L genes modulate the flowering response to different vernalization treatments in winter cultivars. In summary, our results show that conserved and grass specific gene networks interact to modulate the flowering response, and that natural or induced mutations in AP2L genes are useful tools for fine-tuning wheat flowering time in a changing environment.


Asunto(s)
Genes de Plantas , Triticum , Flores/genética , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Poaceae/genética , Triticum/genética
9.
Plant Cell ; 33(12): 3621-3644, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34726755

RESUMEN

Inflorescence architecture is an important determinant of crop productivity. The number of spikelets produced by the wheat inflorescence meristem (IM) before its transition to a terminal spikelet (TS) influences the maximum number of grains per spike. Wheat MADS-box genes VERNALIZATION 1 (VRN1) and FRUITFULL 2 (FUL2) (in the SQUAMOSA-clade) are essential to promote the transition from IM to TS and for spikelet development. Here we show that SQUAMOSA genes contribute to spikelet identity by repressing MADS-box genes VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), SHORT VEGETATIVE PHASE 1 (SVP1), and SVP3 in the SVP clade. Constitutive expression of VRT2 resulted in leafy glumes and lemmas, reversion of spikelets to spikes, and downregulation of MADS-box genes involved in floret development, whereas the vrt2 mutant reduced vegetative characteristics in spikelets of squamosa mutants. Interestingly, the vrt2 svp1 mutant showed similar phenotypes to squamosa mutants regarding heading time, plant height, and spikelets per spike, but it exhibited unusual axillary inflorescences in the elongating stem. We propose that SQUAMOSA-SVP interactions are important to promote heading, formation of the TS, and stem elongation during the early reproductive phase, and that downregulation of SVP genes is then necessary for normal spikelet and floral development. Manipulating SVP and SQUAMOSA genes can contribute to engineering spike architectures with improved productivity.


Asunto(s)
Meristema/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Triticum/genética , Meristema/crecimiento & desarrollo , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Triticum/crecimiento & desarrollo
10.
Nat Biotechnol ; 38(11): 1274-1279, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33046875

RESUMEN

The potential of genome editing to improve the agronomic performance of crops is often limited by low plant regeneration efficiencies and few transformable genotypes. Here, we show that expression of a fusion protein combining wheat GROWTH-REGULATING FACTOR 4 (GRF4) and its cofactor GRF-INTERACTING FACTOR 1 (GIF1) substantially increases the efficiency and speed of regeneration in wheat, triticale and rice and increases the number of transformable wheat genotypes. GRF4-GIF1 transgenic plants were fertile and without obvious developmental defects. Moreover, GRF4-GIF1 induced efficient wheat regeneration in the absence of exogenous cytokinins, which facilitates selection of transgenic plants without selectable markers. We also combined GRF4-GIF1 with CRISPR-Cas9 genome editing and generated 30 edited wheat plants with disruptions in the gene Q (AP2L-A5). Finally, we show that a dicot GRF-GIF chimera improves regeneration efficiency in citrus, suggesting that this strategy can be applied to dicot crops.


Asunto(s)
Plantas Modificadas Genéticamente/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Regeneración , Edición Génica , Oryza/embriología , Oryza/genética , Oryza/fisiología , Triticum/embriología , Triticum/genética , Triticum/fisiología
11.
Plant Cell ; 29(6): 1248-1261, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28550151

RESUMEN

MicroRNAs (miRNAs) are endogenous small RNAs that recognize target sequences by base complementarity and play a role in the regulation of target gene expression. They are processed from longer precursor molecules that harbor a fold-back structure. Plant miRNA precursors are quite variable in size and shape, and are recognized by the processing machinery in different ways. However, ancient miRNAs and their binding sites in target genes are conserved during evolution. Here, we designed a strategy to systematically analyze MIRNAs from different species generating a graphical representation of the conservation of the primary sequence and secondary structure. We found that plant MIRNAs have evolutionary footprints that go beyond the small RNA sequence itself, yet their location along the precursor depends on the specific MIRNA We show that these conserved regions correspond to structural determinants recognized during the biogenesis of plant miRNAs. Furthermore, we found that the members of the miR166 family have unusual conservation patterns and demonstrated that the recognition of these precursors in vivo differs from other known miRNAs. Our results describe a link between the evolutionary conservation of plant MIRNAs and the mechanisms underlying the biogenesis of these small RNAs and show that the MIRNA pattern of conservation can be used to infer the mode of miRNA biogenesis.


Asunto(s)
Evolución Molecular , MicroARNs/genética , ARN de Planta/genética , Regulación de la Expresión Génica de las Plantas/genética , Estabilidad del ARN
12.
Proc Natl Acad Sci U S A ; 112(39): E5401-10, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26324889

RESUMEN

Wheat varieties with a winter growth habit require long exposures to low temperatures (vernalization) to accelerate flowering. Natural variation in four vernalization genes regulating this requirement has favored wheat adaptation to different environments. The first three genes (VRN1-VRN3) have been cloned and characterized before. Here we show that the fourth gene, VRN-D4, originated by the insertion of a ∼290-kb region from chromosome arm 5AL into the proximal region of chromosome arm 5DS. The inserted 5AL region includes a copy of VRN-A1 that carries distinctive mutations in its coding and regulatory regions. Three lines of evidence confirmed that this gene is VRN-D4: it cosegregated with VRN-D4 in a high-density mapping population; it was expressed earlier than other VRN1 genes in the absence of vernalization; and induced mutations in this gene resulted in delayed flowering. VRN-D4 was found in most accessions of the ancient subspecies Triticum aestivum ssp. sphaerococcum from South Asia. This subspecies showed a significant reduction of genetic diversity and increased genetic differentiation in the centromeric region of chromosome 5D, suggesting that VRN-D4 likely contributed to local adaptation and was favored by positive selection. Three adjacent SNPs in a regulatory region of the VRN-D4 first intron disrupt the binding of GLYCINE-RICH RNA-BINDING PROTEIN 2 (TaGRP2), a known repressor of VRN1 expression. The same SNPs were identified in VRN-A1 alleles previously associated with reduced vernalization requirement. These alleles can be used to modulate vernalization requirements and to develop wheat varieties better adapted to different or changing environments.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Plantas/genética , Estaciones del Año , Triticum/crecimiento & desarrollo , Triticum/genética , Asia , Secuencia de Bases , Variación Genética , Datos de Secuencia Molecular , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
13.
Mol Plant ; 7(10): 1533-44, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25053833

RESUMEN

Leaf development has been extensively studied on a genetic level. However, little is known about the interplay between the developmental regulators and the cell cycle machinery--a link that ultimately affects leaf form and size. miR319 is a conserved microRNA that regulates TCP transcription factors involved in multiple developmental pathways, including leaf development and senescence, organ curvature, and hormone biosynthesis and signaling. Here, we analyze the participation of TCP4 in the control of cell proliferation. A small increase in TCP4 activity has an immediate impact on leaf cell number, by significantly reducing cell proliferation. Plants with high TCP4 levels have a strong reduction in the expression of genes known to be active in G2-M phase of the cell cycle. Part of these effects is mediated by induction of miR396, which represses Growth-Regulating Factor (GRF) transcription factors. Detailed analysis revealed TCP4 to be a direct regulator of MIR396b. However, we found that TCP4 can control cell proliferation through additional pathways, and we identified a direct connection between TCP4 and ICK1/KRP1, a gene involved in the progression of the cell cycle. Our results show that TCP4 can activate different pathways that repress cell proliferation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/citología , Arabidopsis/genética , MicroARNs/metabolismo , Factores de Transcripción/genética , Acetatos/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Recuento de Células , Proliferación Celular/efectos de los fármacos , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Genes Reporteros , MicroARNs/genética , Mitosis/efectos de los fármacos , Mitosis/genética , Modelos Biológicos , Datos de Secuencia Molecular , Tamaño de los Órganos/efectos de los fármacos , Oxilipinas/farmacología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
14.
Plant J ; 79(3): 413-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24888433

RESUMEN

The growth-regulating factors (GRFs) are plant-specific transcription factors. They form complexes with GRF-interacting factors (GIFs), a small family of transcriptional co-activators. In Arabidopsis thaliana, seven out of the nine GRFs are controlled by microRNA miR396. Analysis of Arabidopsis plants carrying a GRF3 allele insensitive to miR396 revealed a strong boost in the number of cells in leaves, which was further enhanced synergistically by an additional increase of GIF1 levels. Genetic experiments revealed that GRF3 can still increase cell number in gif1 mutants, albeit to a much lesser extent. Genome-wide transcript profiling indicated that the simultaneous increase of GRF3 and GIF1 levels causes additional effects in gene expression compared to either of the transgenes alone. We observed that GIF1 interacts in vivo with GRF3, as well as with chromatin-remodeling complexes, providing a mechanistic explanation for the synergistic activities of a GRF3-GIF1 complex. Interestingly, we found that, in addition to the leaf size, the GRF system also affects the organ longevity. Genetic and molecular analysis revealed that the functions of GRFs in leaf growth and senescence can be uncoupled, demonstrating that the miR396-GRF-GIF network impinges on different stages of leaf development. Our results integrate the post-transcriptional control of the GRF transcription factors with the progression of leaf development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , Hojas de la Planta/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis , Senescencia Celular/genética , Senescencia Celular/fisiología , Unión Proteica , Factores de Transcripción/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-24902833

RESUMEN

Plants produce new organs throughout their life span. Leaves first initiate as rod-like structures protruding from the shoot apical meristem, while they need to pass through different developmental stages to become the flat organ specialized in photosynthesis. Leaf morphogenesis is an active process regulated by many genes and pathways that can generate organs with a wide variety of sizes and shapes. Important differences in leaf architecture can be seen among different species, but also in single individuals. A key aspect of leaf morphogenesis is the precise control of cell proliferation. Modification or manipulation of this process may lead to leaves with different sizes and shapes, and changes in the organ margins and curvature. Many genes required for leaf development have been identified in Arabidopsis thaliana, and the mechanisms underlying leaf morphogenesis are starting to be unraveled at the molecular level.


Asunto(s)
Arabidopsis/genética , Desarrollo de la Planta , Hojas de la Planta/genética , Brotes de la Planta/genética , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Fotosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/crecimiento & desarrollo
16.
Genome Biol ; 15(3): R41, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24581456

RESUMEN

BACKGROUND: Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. RESULTS: We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. CONCLUSIONS: Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Flores/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/genética , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Dominio MADS/genética , Unión Proteica , Factores de Transcripción/genética
17.
Plant Cell ; 25(9): 3570-83, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24076976

RESUMEN

Because of their sessile lifestyle, plants are continuously exposed to solar UV-B radiation. Inhibition of leaf growth is one of the most consistent responses of plants upon exposure to UV-B radiation. In this work, we investigated the role of Growth-Regulating Factors (GRFs) and of microRNA miR396 in UV-B-mediated inhibition of leaf growth in Arabidopsis thaliana plants. We demonstrate that miRNA396 is upregulated by UV-B radiation in proliferating tissues and that this induction is correlated with a decrease in GRF1, GRF2, and GRF3 transcripts. Induction of miR396 results in inhibition of cell proliferation, and this outcome is independent of the UV-B photoreceptor UV resistance locus 8, as well as ATM AND RAD3-related and the mitogen-activated protein kinase MPK6, but is dependent on MPK3. Transgenic plants expressing an artificial target mimic directed against miR396 (MIM396) with a decrease in the endogenous microRNA activity or plants expressing miR396-resistant copies of several GRFs are less sensitive to this inhibition. Consequently, at intensities that can induce DNA damage in Arabidopsis plants, UV-B radiation limits leaf growth by inhibiting cell division in proliferating tissues, a process mediated by miR396 and GRFs.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , División Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , MicroARNs/metabolismo , Modelos Biológicos , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Rayos Ultravioleta
18.
Mech Dev ; 130(1): 2-13, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22889666

RESUMEN

The microRNA (miRNA) miR396 regulates GROWTH-REGULATING FACTORs (GRFs), a plant specific family of transcription factors. Overexpression of miR396 causes a decrease in the GRFs that has been shown to affect cell proliferation in the meristem and developing leaves. To bring further insights into the function of the miR396 regulatory network we performed a mutant enhancer screen of a stable Arabidopsis transgenic line expressing 35S:miR396b, which has a reduction in leaf size. From this screen we recovered several mutants enhancing this phenotype and displaying organs with lotus- or needle-like shape. Analysis of these plants revealed mutations in as2 and rdr6. While 35S:miR396b in an as2 context generated organs with lotus-like shape, the overexpression of the miRNA in an rdr6 mutant background caused more important developmental defects, including pin-like organs and lobed leaves. Combination of miR396 overexpressors, and rdr6 and as2 mutants show additional organ defects, suggesting that the three pathways act in concert. Genetic interactions during leaf development were observed in a similar way between miR396 overexpression and mutants in RDR6, SGS3 or AGO7, which are known to participate in trans-acting siRNA (ta-siRNA) biogenesis. Furthermore, we found that miR396 can cause lotus- and pin-like organs per se, once a certain expression threshold is overcome. In good agreement, mutants accumulating high levels of TCP4, which induces miR396, interacted with the AS1/AS2 pathway to generate lotus-like organs. The results indicate that the miR396 regulatory network and the ta-siRNA biogenesis pathway synergistically interact during leaf development and morphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Hojas de la Planta , ARN Polimerasa Dependiente del ARN , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Meristema/genética , Meristema/metabolismo , MicroARNs/genética , Morfogénesis , Mutación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Factores de Transcripción/metabolismo
19.
PLoS Genet ; 8(1): e1002419, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22242012

RESUMEN

MicroRNAs (miRNAs) are ∼21 nt small RNAs that regulate gene expression in animals and plants. They can be grouped into families comprising different genes encoding similar or identical mature miRNAs. Several miRNA families are deeply conserved in plant lineages and regulate key aspects of plant development, hormone signaling, and stress response. The ancient miRNA miR396 regulates conserved targets belonging to the GROWTH-REGULATING FACTOR (GRF) family of transcription factors, which are known to control cell proliferation in Arabidopsis leaves. In this work, we characterized the regulation of an additional target for miR396, the transcription factor bHLH74, that is necessary for Arabidopsis normal development. bHLH74 homologs with a miR396 target site could only be detected in the sister families Brassicaceae and Cleomaceae. Still, bHLH74 repression by miR396 is required for margin and vein pattern formation of Arabidopsis leaves. MiR396 contributes to the spatio-temporal regulation of GRF and bHLH74 expression during leaf development. Furthermore, a survey of miR396 sequences in different species showed variations in the 5' portion of the miRNA, a region known to be important for miRNA activity. Analysis of different miR396 variants in Arabidopsis thaliana revealed that they have an enhanced activity toward GRF transcription factors. The interaction between the GRF target site and miR396 has a bulge between positions 7 and 8 of the miRNA. Our data indicate that such bulge modulates the strength of the miR396-mediated repression and that this modulation is essential to shape the precise spatio-temporal pattern of GRF2 expression. The results show that ancient miRNAs can regulate conserved targets with varied efficiency in different species, and we further propose that they could acquire new targets whose control might also be biologically relevant.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al Calcio/genética , MicroARNs/genética , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genoma de Planta , MicroARNs/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica
20.
Development ; 137(1): 103-12, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20023165

RESUMEN

Cell proliferation is an important determinant of plant form, but little is known about how developmental programs control cell division. Here, we describe the role of microRNA miR396 in the coordination of cell proliferation in Arabidopsis leaves. In leaf primordia, miR396 is expressed at low levels that steadily increase during organ development. We found that miR396 antagonizes the expression pattern of its targets, the GROWTH-REGULATING FACTOR (GRF) transcription factors. miR396 accumulates preferentially in the distal part of young developing leaves, restricting the expression of GRF2 to the proximal part of the organ. This, in turn, coincides with the activity of the cell proliferation marker CYCLINB1;1. We show that miR396 attenuates cell proliferation in developing leaves, through the repression of GRF activity and a decrease in the expression of cell cycle genes. We observed that the balance between miR396 and the GRFs controls the final number of cells in leaves. Furthermore, overexpression of miR396 in a mutant lacking GRF-INTERACTING FACTOR 1 severely compromises the shoot meristem. We found that miR396 is expressed at low levels throughout the meristem, overlapping with the expression of its target, GRF2. In addition, we show that miR396 can regulate cell proliferation and the size of the meristem. Arabidopsis plants with an increased activity of the transcription factor TCP4, which reduces cell proliferation in leaves, have higher miR396 and lower GRF levels. These results implicate miR396 as a significant module in the regulation of cell proliferation in plants.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Hibridación in Situ , Meristema/citología , Meristema/genética , Meristema/metabolismo , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transactivadores , Factores de Transcripción/genética , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...