Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36501285

RESUMEN

The nanoencapsulation of nitric oxide (NO) donors is an attractive technique to protect these molecules from rapid degradation, expanding, and enabling their use in agriculture. Here, we evaluated the effect of the soil application of chitosan nanoparticles containing S-nitroso-MSA (a S-nitrosothiol) on the protection of soybeans (Glycine max cv. BRS 257) against copper (Cu) stress. Soybeans were grown in a greenhouse in soil supplemented with 164 and 244 mg kg-1 Cu and treated with a free or nanoencapsulated NO donor at 1 mM, as well as with nanoparticles without NO. There were also soybean plants treated with distilled water and maintained in soil without Cu addition (control), and with Cu addition (water). The exogenous application of the nanoencapsulated and free S-nitroso-MSA improved the growth and promoted the maintenance of the photosynthetic activity in Cu-stressed plants. However, only the nanoencapsulated S-nitroso-MSA increased the bioavailability of NO in the roots, providing a more significant induction of the antioxidant activity, the attenuation of oxidative damage, and a greater capacity to mitigate the root nutritional imbalance triggered by Cu stress. The results suggest that the nanoencapsulation of the NO donors enables a more efficient delivery of NO for the protection of soybean plants under Cu stress.

2.
Planta ; 253(2): 43, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33479798

RESUMEN

MAIN CONCLUSION: Root antioxidant defense, restricted root-to-shoot Cu translocation, altered nutrient partition, and leaf gas exchange adjustments occurred as tolerance mechanisms of soybean plants to increasing soil Cu levels. The intensive application of copper (Cu) fungicides has been related to the accumulation of this metal in agricultural soils. This study aimed to evaluate the effects of increasing soil Cu levels on soybean (Glycine max) plants. Soybean was cultivated under greenhouse conditions in soils containing different Cu concentrations (11.2, 52.3, 79.4, 133.5, 164.0, 205.1, or 243.8 mg kg-1), and biochemical and morphophysiological plant responses were analyzed through linear and nonlinear regression models. Although Cu concentrations around 50 mg kg-1 promoted some positive effects on the initial development of soybean plants (e.g., increased root length and dry weight), these Cu concentrations also induced root oxidative stress and activated defense mechanisms (such as the induction of antioxidant response, N and S accumulation in the roots). At higher concentrations, Cu led to growth inhibition (mainly of the root), nutritional imbalance, and damage to the photosynthetic apparatus of soybean plants, resulting in decreased CO2 assimilation and stomatal conductance. In contrast, low translocation of Cu to the leaves, conservative water use, and increased carboxylation efficiency contributed to the partial mitigation of Cu-induced stress. These responses allowed soybean plants treated with Cu levels in the soil as high as 90 mg kg-1 to maintain growth parameters higher than or similar to those of plants in the non-contaminated soil. These data provide a warning for the potentially deleterious consequences of the increasing use of Cu-based fungicides. However, it is necessary to verify how the responses to Cu contamination are affected by different types of soil and soybean cultivars.


Asunto(s)
Cobre , Glycine max , Modelos Estadísticos , Contaminantes del Suelo , Cobre/toxicidad , Contaminantes Ambientales/toxicidad , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Análisis de Regresión , Suelo/química , Glycine max/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA