Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
Arch Microbiol ; 206(1): 35, 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38141073

RESUMEN

Interest in Antarctic fungi has grown due to their resilience in harsh environments, suggesting the presence of valuable compounds from its organisms, such as those presenting photoprotective potential, since this environment suffers the most dangerous UV exposure in the world. Therefore, this research aimed to assess the photoprotective potential of compounds from sustainable marine sources, specifically seaweed-derived fungi from Antarctic continent. These studies led to discovery of photoprotective and antioxidant properties of metabolites from Arthrinium sp., an endophytic fungus from Antarctic brown algae Phaeurus antarcticus. From crude extract, fractions A-I were obtained and compounds 1-6 isolated from E and F fractions, namely 3-Hydroxybenzyl alcohol (1), (-)-orthosporin (2), norlichexanthone (3), anomalin B (4), anomalin A (5), and agonodepside B (6). Compounds 1, 2, and 6 were not previously reported in Arthrinium. Fraction F demonstrated excellent absorbance in both UVA and UVB regions, while compound 6 exhibited lower UVB absorbance, possibly due to synergistic effects. Fraction F and compound 6 displayed photostability and were non-phototoxic to HaCaT cells. They also exhibited antioxidant activity by reducing intracellular ROS production induced by UVA in keratinocyte monolayers and reconstructed human skin models (resulting in 34.6% and 30.2% fluorescence reduction) and did not show irritation potential in HET-CAM assay. Thus, both are promising candidates for use in sunscreens. It is noted that Fraction F does not require further purification, making it advantageous, although clinical studies are necessary to confirm its potential applicability for sunscreen formulations.


Asunto(s)
Rayos Ultravioleta , Xylariales , Humanos , Protectores Solares/farmacología , Protectores Solares/química , Piel , Antioxidantes/farmacología , Antioxidantes/metabolismo
2.
Chem Biodivers ; 20(12): e202300429, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37908056

RESUMEN

Phaeurus antarcticus is a member of the Desmarestiaceae family endemic to the Antarctic Peninsula. Reports addressing its chemical composition and biological activities are scarce. Herein, bioactive non-polar compounds of P. antarcticus against pathogenic bacteria, Leishmania amazonensis and Neospora caninum parasites were targeted through GC-MS Molecular Networking and multivariate analysis (OPLS-DA). The effects on horseradish peroxidase (HRP) were also evaluated. P. antarcticus exhibited selective bacteriostatic and bactericidal activities against Staphylococcus aureus with MIC and MBC values from 6.25-100 µg mL-1 . Fractions HX-FC and HX-FD were the most active against L. amazonensis with EC50 ranging from 18.5-62.3 µg mL-1 . Additionally, fractions HX-FC and HX-FD showed potent inhibition of N. caninum at EC50 values of 2.8 and 6.3 µg mL-1 , respectively. All fractions inhibited HRP activity, indicating possible interactions with Heme proteins. It was possible to annotate compounds from tree mains clusters, containing terpenoids, steroids, fatty acids, and alcohols by correlating the spectral data of the GC-MS analysis with Molecular Networking and the OPLS-DA results.


Asunto(s)
Antiinfecciosos , Algas Marinas , Extractos Vegetales/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Regiones Antárticas , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
3.
Mar Biotechnol (NY) ; 23(3): 357-372, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33811268

RESUMEN

Marine-derived fungi proved to be a rich source of biologically active compounds. The genus Penicillium has been extensively studied regarding their secondary metabolites and biological applications. However, the photoprotective effects of these metabolites remain underexplored. Herein, the photoprotective potential of Penicillium echinulatum, an Antarctic alga-associated fungus, was assessed by UV absorption, photostability study, and protection from UVA-induced ROS generation assay on human immortalized keratinocytes (HaCaT) and reconstructed human skin (RHS). The photosafety was evaluated by the photoreactivity (OECD TG 495) and phototoxicity assays, performed by 3T3 neutral red uptake (3T3 NRU PT, OECD TG 432) and by the RHS model. Through a bio-guided purification approach, four known alkaloids, (-)-cyclopenin (1), dehydrocyclopeptine (2), viridicatin (3), and viridicatol (4), were isolated. Compounds 3 and 4 presented absorption in UVB and UVA-II regions and were considered photostable after UVA irradiation. Despite compounds 3 and 4 showed phototoxic potential in 3T3 NRU PT, no phototoxicity was observed in the RHS model (reduction of cell viability < 30%), which indicates their very low acute photoirritation and high photosafety potential in humans. Viridicatin was considered weakly photoreactive, while viridicatol showed no photoreactivity; both compounds inhibited UVA-induced ROS generation in HaCaT cells, although viridicatol was not able to protect the RHS model against UVA-induced ROS production. Thus, the results highlighted the photoprotective and antioxidant potential of metabolites produced by P. echinulatum which can be considered a new class of molecules for photoprotection, since their photosafety and non-cytotoxicity were predicted using recommended in vitro methods for topical use.


Asunto(s)
Alcaloides/química , Penicillium/química , Piel/efectos de la radiación , Rayos Ultravioleta , Células 3T3 , Alcaloides/toxicidad , Animales , Antioxidantes , Dermatitis Fototóxica , Células HaCaT , Humanos , Ratones , Rojo Neutro/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Protectores Solares
4.
Nat Prod Res ; 35(23): 5470-5474, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32567355

RESUMEN

Leishmaniasis is a group of diseases that have limited and high toxic therapeutic options. Herein, we evaluated the antileishmanial potential and cytotoxicity of hexanic extract obtained from the Antarctic brown alga Ascoseira mirabilis using bioguided fractionation against Leishmania amazonensis and murine macrophages, which was fractionated by SPE, yielding seven fractions (F1-F7). The fraction F6 showed good anti-amastigote activity (IC50 = 73.4 ± 0.4 µg mL-1) and low cytotoxicity (CC50 > 100 µg mL-1). Thus, in order to identify the bioactive constituent(s) of F6, the fraction was separated in a semipreparative HPLC, yielding four fractions (F6.1-F6.4). F6.2 was the most bioactive fraction (IC50 = 66.5 ± 4.5 µg mL-1) and GC-MS analyses revealed that the compounds octadecane, propanoic acid, 1-monomyristin and azelaic acid correspond to 61% of its composition. These data show for the first time the antileishmanial potential of the Antarctic alga A. mirabilis.


Asunto(s)
Antiprotozoarios , Leishmania mexicana , Leishmaniasis , Mirabilis , Phaeophyceae , Animales , Antiprotozoarios/farmacología , Leishmaniasis/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/uso terapéutico
5.
Antioxidants (Basel) ; 9(4)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316531

RESUMEN

Fucoxanthin possesses a well-described antioxidant activity that might be useful for human skin photoprotection. However, there is a lack of scientific information regarding its properties when applied onto human skin. Thus, the objective of the present study was to assess the photoprotective and phototoxicity potential of fucoxanthin based on its ultraviolet (UVB 280-320 nm; UVA 320-400 nm) and visible (VIS 400-700 nm) absorption, photostability, phototoxicity in 3T3 mouse fibroblast culture vs. full-thickness reconstructed human skin (RHS), and its ability to inhibit reactive oxygen species formation that is induced by UVA on HaCaT keratinocytes. Later, we evaluated the antioxidant properties of the sunscreen formulation plus 0.5% fucoxanthin onto RHS to confirm its bioavailability and antioxidant potential through the skin layers. The compound was isolated from the alga Desmarestia anceps. Fucoxanthin, despite presenting chemical photo-instability (dose 6 J/cm2: 35% UVA and 21% VIS absorbance reduction), showed acceptable photodegradation (dose 27.5 J/cm2: 5.8% UVB and 12.5% UVA absorbance reduction) when it was added to a sunscreen at 0.5% (w/v). In addition, it increased by 72% of the total sunscreen UV absorption spectra, presenting UV-booster properties. Fucoxanthin presented phototoxic potential in 3T3 fibroblasts (mean photo effect 0.917), but it was non-phototoxic in the RHS model due to barrier function that was provided by the stratum corneum. In addition, it showed a significant inhibition of ROS formation at 0.01% (p < 0.001), in HaCat, and in a sunscreen at 0.5% (w/v) (p < 0.001), in RHS. In conclusion, in vitro results showed fucoxanthin protective potential to the skin that might contribute to improving the photoprotective potential of sunscreens in vivo.

6.
Pharmaceutics ; 12(2)2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033492

RESUMEN

UV light catalyzes the ozone formation from air pollutants, like nitrogen oxides. Since ozone reacts with cutaneous sebum lipids to peroxides and, thus, promotes inflammation, tumorigenesis, and aging, even broad-spectrum sunscreens cannot properly protect skin. Meanwhile, xanthophylls, like fucoxanthin, proved their antioxidant and cytoprotective functions, but the safety of their topical application in human cell-based models remains unknown. Aiming for a more detailed insight into the cutaneous fucoxanthin toxicity, we assessed the tissue viability according to OECD test guideline no. 439 as well as changes in inflammation (IL-1α, IL-6, IL-8), homeostasis (EGFR, HSPB1) and metabolism (NAT1). First, we proved the suitability of our 24-well-based reconstructed human skin for irritation testing. Next, we dissolved 0.5% fucoxanthin either in alkyl benzoate or in ethanol and applied both solutions onto the tissue surface. None of the solutions decreased RHS viability below 50%. In contrast, fucoxanthin ameliorated the detrimental effects of ethanol and reduced the gene expression of pro-inflammatory interleukins 6 and 8, while increasing NAT1 gene expression. In conclusion, we developed an organ-on-a-chip compatible RHS, being suitable for skin irritation testing beyond tissue viability assessment. Fucoxanthin proved to be non-irritant in RHS and already showed first skin protective effects following topical application.

7.
Antibiotics (Basel) ; 8(4)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683523

RESUMEN

The marine environment presents a high biodiversity and a valuable source of bioactive compounds with therapeutic and biotechnological potential. Among the organisms present in marine environment, the endophytic fungi isolated from seaweed stand out. These microorganisms have aroused interest in the scientific community regarding its various activities such as antiviral, antimicrobial, antioxidant, photoprotective, cytotoxic, genotoxic, anti-inflammatory, and anticancer, besides establishing important ecological relations with its hosts. Anticancer molecules derived from marine natural sources are a promising target against different types of cancer. The disease's high rates of morbidity and mortality affect millions of people world wild and the search for new therapeutic alternatives is needed. Thus, this review partially summarizes the methodologies for the isolation of seaweed-derived endophytic fungi, as well as describes the anticancer compounds isolated from such microorganisms, reported in the literature from 2009 to the present. In addition, it describes how some biotechnological processes can help in the discovery of bioactive compounds, especially with anticancer activity.

8.
Curr Microbiol ; 76(5): 575-582, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30868211

RESUMEN

Cyanobacterial communities from the Brazilian Atlantic coast have been recently sampled through cultured and non-cultured approaches. The maintenance of cyanobacterial strains in laboratory cultures is an important source of material for biological and chemical evaluation as well as biotechnological investigations. In this way, this work aimed to identify, for the first time, by means of GC-MS analyses, the nonpolar chemical profiles of four morphologically distinct cyanobacterial strains: Cyanobium sp. CENA178, Cyanobium sp. CENA181, Oxynema sp. CENA135 and Nostoc sp. CENA175, which were previously isolated from Brazilian mangroves. Six distinct classes of volatile compounds were identified: acids, alcohols, fatty aldehydes, esters, ketones and aliphatic hydrocarbons, from which 12 compounds were detected. The predominant compounds were 1-octadecyne and tetradecanoic acid, obtained from Oxynema sp. CENA135 and; the last one being also observed in Cyanobium sp. CENA181. In addition, the aliphatic hydrocarbon heptadecane was produced by these cyanobacterial strains as well as by Nostoc sp. CENA175. The compounds produced by the studied cyanobacteria have already been reported as possessing pharmaceutical properties such as antioxidant, cytotoxic and antimicrobial activities, besides industrial importance as source of intermediates for biofuel production. It is also important to mention that, considering the number of non-identified compounds, which were not compatible with the searched databases, these strains are promising sources of new compounds, denoting the need for more studies. Accordingly, since these strains were isolated from saline or brackish waters, it is also expected that they might be cultivated in waters not used for human consumption, enabling a low-cost approach for biomass and metabolites production.


Asunto(s)
Cianobacterias/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Humedales , Aldehídos , Biomasa , Brasil , Cianobacterias/clasificación , Ésteres/metabolismo , Ácidos Grasos/biosíntesis , Cromatografía de Gases y Espectrometría de Masas , Cetonas/metabolismo , Ácido Mirístico/metabolismo , Nostoc/metabolismo , Filogenia
9.
J Photochem Photobiol B ; 178: 316-322, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29175758

RESUMEN

Natural products, or secondary metabolites, obtained from fungal species associated with marine algae have been widely used in sunscreens due to their antioxidant activity and protective potential against solar radiation. The endophytic fungus isolated from Bostrychia radicans algae collected in the Rio Escuro mangrove, São Paulo State, Brazil, Annulohypoxylon stygium (Xylariaceae family) was studied to evaluate the photoprotective potential of its metabolites. The Annulohypoxylon genus can produce secondary metabolites with interesting cytotoxic, antibacterial and antioxidant properties and was never isolated before from a marine alga or had its metabolites studied for UV protection. The fungal culture (code As) extracted with dichloromethane: methanol (2:1) yielded 9 fractions (Asa to Asi) which were submitted to different chromatographic methodologies to obtain pure compounds, and to spectroscopic methodologies to elucidate their structures. Also, a screening was conducted to evaluate the qualitative production of the metabolites, besides the absorption in the UVA/UVB range, their photostability and phototoxicity potential using the 3T3 NRU phototoxicity test (OECD TG 432). This study led to the isolation of a novel compound, 3-benzylidene-2-methylhexahydropyrrolo [1,2-α] pyrazine-1,4-dione (1), from fractions Ase3 and Asf3; Ase1 was identified as 1-(1,3-Benzodioxol-5-yl)-1,2-propanediol (2), two metabolites were isolated as diastereomers (1S,2R)-1-phenyl-1,2-propanediol (3) from Asd2 and (1R,2R)-1-phenyl-1,2-propanediol (4) from Asd3, and Ase1 and 1,3-benzodioxole-5-methanol (5) from Asc1. The results obtained showed a great potential source of new molecules to be used as UVB filters in sunscreens, since substances 1-2 presented UVB absorption, had no phototoxic potential and were considered photostable. In conclusion, these compounds can be considered as a potential new class of molecules for photoprotection, since their photosafety and non-cytotoxicity were predicted using in vitro methods for topical use. Meanwhile, further efficacy assays shall be conducted for the establishment of their Sun Protection Factor (SPF). Also, this work provided new information concerning the metabolic profile of A. stygium, since it was possible to obtain two enantiomer compounds (3) and (4). One of them belonged to the same skeleton, but with a methylenedioxy moiety, showing the richest enzymatic pattern for this microorganism.


Asunto(s)
Ascomicetos/metabolismo , Productos Biológicos/química , Sustancias Protectoras/química , Células 3T3 , Animales , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Espectroscopía de Resonancia Magnética , Ratones , Conformación Molecular , Sustancias Protectoras/aislamiento & purificación , Sustancias Protectoras/farmacología , Algas Marinas/microbiología , Espectrofotometría Ultravioleta , Factor de Protección Solar , Rayos Ultravioleta
10.
Toxicol In Vitro ; 37: 211-217, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27546515

RESUMEN

Phomoxanthone A (PhoA) is a compound isolated from the endophytic fungus Phomopsis longicolla, associated with marine algae Bostrychia radicans. Although this metabolite was previously described regarding its high biological potential, there are no reports concerning the effects of this compound on DNA integrity. This study aimed to evaluate, in lymphocytes and promyelocytic leukemia HL60 cells, the cytotoxicity of this compound through MTT and neutral red (NR) assays, as well as its genotoxicity and mutagenicity by alkaline comet assay and cytokinesis-block micronucleus cytome assay (CBMN-Cyt), respectively. Cells were treated with PhoA concentrations ranging from 0.01 to 100.0µg/mL, and the results show that this molecule did not exhibit cytotoxicity, genotoxicity or mutagenicity in lymphocytes at any tested concentration. Furthermore, PhoA was highly cytotoxic, genotoxic and mutagenic to HL60 cells, establishing a differential response of this natural product in normal and cancer cells. PhoA was highly selective towards HL60 compared to lymphocytes, causing no damage in the latter cell line, suggesting that this compound could be a promising compound in antitumoral drug development.


Asunto(s)
Antineoplásicos/toxicidad , Mutágenos/toxicidad , Xantonas/toxicidad , Adolescente , Adulto , Antineoplásicos/aislamiento & purificación , Ascomicetos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ensayo Cometa , Femenino , Células HL-60 , Humanos , Linfocitos/efectos de los fármacos , Masculino , Pruebas de Micronúcleos , Mutágenos/aislamiento & purificación , Xantonas/aislamiento & purificación , Adulto Joven
11.
Toxicol In Vitro ; 29(7): 1906-15, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26247324

RESUMEN

Common water pollutants, azo dyes and their degradation products have frequently shown toxicity, including carcinogenic and mutagenic effects, and can induce serious damage in aquatic organisms and humans. In the present study, the mutagenic potential of the azo dye Disperse Red 13 (DR13) was first evaluated using the Micronucleus Assay in human lymphocytes. Subsequently, in order to mimic hepatic biotransformation, controlled potential electrolysis was carried out with a DR13 solution using a Potentiostat/Galvanostat. In addition, a DR13 solution was oxidized using S9 (homogenate of rat liver cells). DR13 oxidation and the reduction products were identified using HPLC-DAD and GC/MS, and their mutagenic potential investigated by way of a Salmonella/microsome assay using TA98 and YG1041 strains, with no S9. The original azo dye DR13 induced chromosomal damage in human lymphocytes, and the respective oxidation and reduction products also showed mutagenic activity, as detected by the Salmonella/microsome assay. Furthermore sulfate 2-[(4-aminophenyl)ethylamino]-ethanol monohydrate, 2-chloro-4-nitro-benzamine, 4-nitro-benzamine and 2-(ethylphenylamine)-ethanol were identified as products of the DR13 reduction/oxidation reactions. Thus it was concluded that the contamination of water effluents with DR13 is a health risk not only due to the dye itself, but also due to the possibility of drinking contaminated water, considering the harmful compounds that can be produced after hepatic biotransformation.


Asunto(s)
Compuestos Azo/toxicidad , Colorantes/toxicidad , Mutágenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Células Cultivadas , Humanos , Linfocitos/efectos de los fármacos , Pruebas de Mutagenicidad , Oxidación-Reducción , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética
12.
Rev. bras. farmacogn ; 22(4): 906-920, jul.-ago. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-640360

RESUMEN

Marine natural products have currently been recognized as the most promising source of bioactive substances for drug discovery research. In this review, extraordinary metabolites from marine algae species are illustrated, as well as approaches for their isolation and determination of their biological properties and pharmaceutical potential. Furthermore, marine endophytic microorganisms (from marine algae) are presented as a new subject for extensive investigation to find novel natural products, which make them a potentially rich and innovative source for new drug candidates.

13.
Toxicol In Vitro ; 25(8): 2054-63, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21907275

RESUMEN

Azo dyes constitute the largest class of synthetic dyes. Following oral exposure, these dyes can be reduced to aromatic amines by the intestinal microflora or liver enzymes. This work identified the products formed after oxidation and reduction of the dye Disperse Red 1, simulating hepatic biotransformation and evaluated the mutagenic potential of the resultant solution. Controlled potential electrolysis was carried out on dye solution using a Potentiostat/Galvanostat. HPLC-DAD and GC/MS were used to determine the products generated after the oxidation/reduction process. The Salmonella/microsome assay with the strains TA98 and YG1041 without S9, and the mouse lymphoma assay (MLA) using the thymidine kinase (Tk) gene, were used to evaluate the mutagenicity of the products formed. Sulfate 2-[(4-aminophenyl)ethylamino]-ethanol monohydrate, nitrobenzene, 4-nitro-benzamine and 2-(ethylphenylamino)-ethanol were detected. This dye has already being assigned as mutagenic in different cell system. In addition, after the oxidation/reduction process the dye still had mutagenic activity for the Salmonella/microsome assay. Nevertheless, both the original dye Disperse Red 1 and its treated solutions showed negative results in the MLA. The present results suggest that the ingestion of water and food contaminated with this dye may represent human and environmental health problem, due to the generation of harmful compounds after biotransformation.


Asunto(s)
Compuestos Azo/toxicidad , Colorantes/toxicidad , Mutágenos/toxicidad , Animales , Compuestos Azo/química , Compuestos Azo/metabolismo , Biotransformación , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Colorantes/química , Colorantes/metabolismo , Electrólisis , Cromatografía de Gases y Espectrometría de Masas , Ratones , Pruebas de Mutagenicidad , Mutágenos/química , Mutágenos/metabolismo , Oxidación-Reducción , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética
14.
J Pharm Biomed Anal ; 52(5): 763-9, 2010 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-20236785

RESUMEN

Specimens of the red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales) were collected from the São Paulo coast and submitted to room temperature solvent extraction. The resulting extract was fractionated by partitioning with organic solvent. The n-hexane (BT-H) and dichloromethane (BT-D) fractions showed antiprotozoal potential in biological tests with Trypanosoma cruzi and Leishmania amazonensis and presented high activity in an antifungal assay with the phytopathogenic fungi Cladosporium cladosporioides and Cladosporium sphaerospermum. Chromatography methods were used to generate subfractions from BT-H (H01 to H11) and from BT-D (D01 to D19). The subfractions were analyzed by gas chromatography-mass spectrometry (GC/MS), and the substances were identified by retention index (Kovats) and by comparison to databases of commercial mass spectra. The volatile compounds found in marine algae were identified as fatty acids, low molecular mass hydrocarbons, esters and steroids; some of these have been previously described in the literature based on other biological activities. Moreover, uncommon substances, such as neophytadiene were also identified. In a trypanocidal assay, fractions BT-H and BT-D showed IC(50) values of 16.8 and 19.1 microg/mL, respectively, and were more active than the gentian violet standard (31 microg/mL); subfractions H02, H03, D01 and D02 were active against L. amasonensis, exhibiting IC(50) values of 1.5, 2.7, 4.4, and 4.3 microg/mL, respectively (standard amphotericin B: IC(50)=13 microg/mL). All fractions showed antifungal potential. This work reports the biological activity and identification of compounds by GC/MS for the marine red alga B. tenella for the first time.


Asunto(s)
Antifúngicos/farmacología , Leishmania/efectos de los fármacos , Extractos Vegetales/farmacología , Rhodophyta/química , Tripanocidas/farmacología , Animales , Antifúngicos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Extractos Vegetales/aislamiento & purificación , Tripanocidas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...