Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38753436

RESUMEN

Prussian blue analogues (PBAs) are considered to be one of the most suitable sodium storage materials, especially with the introduction of the high-entropy (HE) concept into their structure to further improve their various abilities. However, severe agglomeration of the HEPBA particles still limits the fast charging capabilities. Here, an HEPBA (Nax(FeMnCoNiCu)[Fe(CN)6]y□1-y·nH2O) with a hollow stair-stepping spherical structure has been prepared through the chemical etching process of the traditional cubic structure of HEPBA. Electrochemical characterization (sodium ion battery), kinetic analysis, and COMSOL Multiphysics simulations reveal that the nature of the high-entropy and the hollow stair-stepping spherical structure can greatly improve the diffusion behavior of Na+ ions. Moreover, the hollow structure effectively mitigates the volume change of HEPBA during SIBs operation, ultimately extending the lifespan. Consequently, the as-prepared HEPBA cathode exhibits excellent rate performance (126.5 and 76.4 mAh g-1 at 0.1 and 4.0 A g-1, respectively) and stable long-term capability (maintaining its 75.6% capacity after 1000 cycles) due to its unique structure. Furthermore, the waste of the etching process can easily be recycled to prepare more HEPBA product. This processing method holds great promise for designing nanostructures of advanced high-entropy Prussian blue analogues for sodium ion batteries.

2.
Nano Lett ; 24(10): 3036-3043, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415595

RESUMEN

Zinc-iodine batteries (ZIBs) are promising candidates for ecofriendly, safe, and low-cost energy storage systems, but polyiodide shuttling and the complex cathode fabrication procedures have severely hindered their broader commercial usage. Herein, a protocol is developed using phospholipid-like oleylamine molecules for scalable production of Langmuir-Blodgett films, which allows the facile preparation of ZIB cathodes in less than 1 min. The resulting inhomogeneous cathode allows for the continuous conversion of iodine. Moreover, the amine group of the oleylamine molecule at the cathode is capable of producing [OA*I+]I3- charge-transfer complexes with iodine, which facilitates the rapid migration of iodine and results in a highly reversible iodine conversion process. Consequently, the as-prepared ZIBs can deliver over 2000 cycles at 0.5 mA cm-2 with a capacity retention of 75.3%. This work presents a novel, straightforward, and efficient method for the rapid construction of ZIBs.

3.
Small ; : e2312019, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389179

RESUMEN

The growing interest in so-called interface coupling strategies arises from their potential to enhance the performance of active electrode materials. Nevertheless, designing a robust coupled interface in nanocomposites for stable electrochemical processes remains a challenge. In this study, an epitaxial growth strategy is proposed by synthesizing sulfide rhenium (ReS2 ) on exfoliated black phosphorus (E-BP) nanosheets, creating an abundance of robust interfacial linkages. Through spectroscopic analysis using X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, the authors investigate the interfacial environment. The well-developed coupled interface and structural stability contribute to the impressive performance of the 3D-printed E-BP@ReS2 -based micro-supercapacitor, achieving a specific capacitance of 47.3 mF cm-2 at 0.1 mA cm-2 and demonstrating excellent long-term cyclability (89.2% over 2000 cycles). Furthermore, density functional theory calculations unveil the positive impact of the strongly coupled interface in the E-BP@ReS2 nanocomposite on the adsorption of H+ ions, showcasing a significantly reduced adsorption energy of -2.17 eV. The strong coupling effect facilitates directional charge delocalization at the interface, enhancing the electrochemical performance of electrodes and resulting in the successful construction of advanced micro-supercapacitors.

4.
J Mater Chem C Mater ; 12(2): 655-663, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38188498

RESUMEN

All-inorganic CsPbBr3 perovskites have gained significant attention due to their potential in direct X-ray detection. The fabrication of stable, pinhole-free thick films remains challenging, hindering their integration in durable, large-area high-resolution devices. In this study, we propose a facile strategy using a non-conductive polymer to create a flexible, compact thick film under ambient conditions. Furthermore, we investigate the effect of introducing the 2D CsPb2Br5 phase into CsPbBr3 perovskite crystals on their photophysical properties and charge transport. Upon X-ray exposure, the devices consisting of the dual phase exhibit improved stability and more effective operation at higher voltages. Rietveld refinement shows that, due to the presence of the second phase, local distortions and Pb-vacancies are introduced within the CsPbBr3 lattice. This in turn presumably increases the ion migration energy barrier, resulting in a very low dark current and hence, enhanced stability. This feature might benefit local charge extraction and, ultimately, the X-ray image resolution. These findings also suggest that introducing a second phase in the perovskite structure can be advantageous for efficient photon-to-charge carrier conversion, as applied in medical imaging.

5.
Angew Chem Int Ed Engl ; 63(1): e202316097, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37985423

RESUMEN

Electrocatalytic nitrogen oxidation reaction (NOR) offers an efficient and sustainable approach for conversion of widespread nitrogen (N2 ) into high-value-added nitrate (NO3 - ) under mild conditions, representing a promising alternative to the traditional approach that involves harsh Haber-Bosch and Ostwald oxidation processes. Unfortunately, due to the weak absorption/activation of N2 and the competitive oxygen evolution reaction, the kinetics of NOR process is extremely sluggish accompanied with low Faradaic efficiencies and NO3 - yield rates. In this work, an oxygen-vacancy-enriched perovskite oxide with nonstoichiometric ratio of strontium and ruthenium (denoted as Sr0.9 RuO3 ) was synthesized and explored as NOR electrocatalyst, which can exhibit a high Faradaic efficiency (38.6 %) with a high NO3 - yield rate (17.9 µmol mg-1 h-1 ). The experimental results show that the amount of oxygen vacancies in Sr0.9 RuO3 is greatly higher than that of SrRuO3 , following the same trend as their NOR performance. Theoretical simulations unravel that the presence of oxygen vacancies in the Sr0.9 RuO3 can render a decreased thermodynamic barrier toward the oxidation of *N2 to *N2 OH at the rate-determining step, leading to its enhanced NOR performance.

6.
J Am Chem Soc ; 145(30): 16584-16596, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37487055

RESUMEN

In this work, we have fabricated an aryl amino-substituted graphitic carbon nitride (g-C3N4) catalyst with atomically dispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibited excellent reactivity, obtaining up to 2230 µM H2O2 in 7 h from alkaline water and up to 1800 µM from seawater under identical conditions. More importantly, the catalyst was quickly recovered for subsequent reuse without appreciable loss in performance. Interestingly, unlike the usual two-electron oxygen reduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction (WOR) process in which both the direct and indirect WOR processes occurred; namely, photoinduced h+ directly oxidized H2O to H2O2 via a one-step 2e- WOR, and photoinduced h+ first oxidized a hydroxide (OH-) ion to generate a hydroxy radical (•OH), and H2O2 was formed indirectly by the combination of two •OH. We have characterized the material, at the catalytic sites, at the atomic level using electron paramagnetic resonance, X-ray absorption near edge structure, extended X-ray absorption fine structure, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, magic-angle spinning solid-state NMR spectroscopy, and multiscale molecular modeling, combining classical reactive molecular dynamics simulations and quantum chemistry calculations.

7.
Adv Mater ; 35(29): e2211198, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37060330

RESUMEN

Synergically combining their respective ultrahigh charge mobility and strong light absorption, graphene (Gr)/semiconductor heterostructures are promising building blocks for efficient optoelectronics, particularly photodetectors. Charge transfer (CT) across the heterostructure interface crucially determines device efficiency and functionality. Here, it is reported that hole-transfer processes dominate the ultrafast CT across strongly coupled double-perovskite Cs2 AgBiBr6 /graphene (DP/Gr) heterostructures following optical excitation. While holes are the primary charges flowing across interfaces, their transfer direction, as well as efficiency, show a remarkable dependence on the excitation wavelength. For excitation with photon energies below the bandgap of DPs, the photoexcited hot holes in Gr can compete with the thermalization process and inject into in-gap defect states in DPs. In contrast, above-bandgap excitation of DP reverses the hole-transfer direction, leading to hole transfer from the valence band of DPs to Gr. Experimental evidence that increasing the excitation photon energy enhances CT efficiency for both below- and above-bandgap photoexcitation regimes is further provided, unveiling the positive role of excess energy in enhancing interfacial CT. The possibility of switching the hole-transfer direction and thus the interfacial photogating field by tuning the excitation wavelength, provides a novel way to control the interfacial charge flow across a DP/Gr heterojunction.

8.
Nanoscale ; 15(11): 5437-5447, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36846886

RESUMEN

Surface passivation by post-treatment with methylammonium chloride (MACl) is regarded as a promising strategy to suppress surface defects in organic-inorganic lead halide perovskites and elevate the efficiency of solar cells based on these materials. However, traditional MACl post-treatment methods often impede the performance of the final device, due to the creation of additional unwanted defects. Herein, we report a novel approach for chloride post-treatment by applying a mixed ethanol/toluene solvent and validate its beneficial effect on the structure, composition, and optical properties of methylammonium lead iodide nano/microcrystals and related photosensitive devices. An optimized (mild) Cl content improves the crystallinity, enhances photoluminescence (PL) intensity, provides longer PL lifetimes, and induces brighter and longer ON-states in single-particle emission trajectories. On top of a reduction in the population percentage of crystals showing gradual photodegradation, our Cl-treatment method even leads to photobrightening. Additionally, the extent of carrier communication throughout spatially distant nanodomains enhances after MACl-based post-modification. Our results demonstrate that surface-bound Cl significantly reduces the trap density induced by under-coordinated lead ions or iodide vacancies and reveal the importance of a careful consideration of the applied Cl content to avoid the generation of high-bandgap MAPbCl3 heterojunctions upon excessive Cl treatment. Importantly, significant trap passivation upon MACl treatment translates into a more stable and elevated photocurrent in the corresponding photodetector device. We anticipate these findings will be beneficial for designing durable, high-performance lead halide perovskite photonic devices.

9.
ACS Energy Lett ; 8(1): 420-428, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36660369

RESUMEN

Large polarons are known to form in lead halide perovskites (LHPs). Photoinduced isolated polarons at low densities have been well-researched, but many-body interactions at elevated polaron densities, exceeding the Mott criterion (i.e., Mott polaron density), have remained elusive. Here, employing ultrafast terahertz spectroscopy, we identify a stable Mott polaron state in LHPs at which the polaron wavefunctions start to overlap. The Mott polaron density is determined to be ∼1018 cm-3, in good agreement with theoretical calculations based on the Feynman polaron model. The electronic phase transition across the Mott density is found to be universal in LHPs and independent of the constituent ions. Exceeding the Mott polaron density, excess photoinjected charge carriers annihilate quickly within tens to hundreds of picoseconds, before reaching the stable and long-lived Mott state. These results have considerable implications for LHP-based devices and for understanding exotic phenomena reported in LHPs.

10.
ACS Appl Mater Interfaces ; 15(5): 7294-7307, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36705637

RESUMEN

Lead halide perovskites are promising candidates for high-performance light-emitting diodes (LEDs); however, their applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated formamidinium lead bromide (FAPbBr3) nanocrystals (NCs) substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and water-treated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.

11.
Nat Commun ; 13(1): 7513, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473874

RESUMEN

The black perovskite phase of CsPbI3 is promising for optoelectronic applications; however, it is unstable under ambient conditions, transforming within minutes into an optically inactive yellow phase, a fact that has so far prevented its widespread adoption. Here we use coarse photolithography to embed a PbI2-based interfacial microstructure into otherwise-unstable CsPbI3 perovskite thin films and devices. Films fitted with a tessellating microgrid are rendered resistant to moisture-triggered decay and exhibit enhanced long-term stability of the black phase (beyond 2.5 years in a dry environment), due to increasing the phase transition energy barrier and limiting the spread of potential yellow phase formation to structurally isolated domains of the grid. This stabilizing effect is readily achieved at the device level, where unencapsulated CsPbI3 perovskite photodetectors display ambient-stable operation. These findings provide insights into the nature of phase destabilization in emerging CsPbI3 perovskite devices and demonstrate an effective stabilization procedure which is entirely orthogonal to existing approaches.

12.
J Mater Chem C Mater ; 10(37): 13437-13461, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36324302

RESUMEN

Semiconducting nanomaterials have been widely explored in diverse optoelectronic applications. Colloidal lead halide perovskite nanocrystals (NCs) have recently been an excellent addition to the field of nanomaterials, promising an enticing building block in the field of light emission. In addition to the notable optoelectronic properties of perovskites, the colloidal NCs exhibit unique size-dependent optical properties due to the quantum size effect, which makes them highly attractive for light-emitting diodes (LEDs). In the past few years, perovskite-based LEDs (PeLEDs) have demonstrated a meteoritic rise in their external quantum efficiency (EQE) values, reaching over 20% so far. Among various halide perovskite compositions, FAPbBr3 and its variants remain one of the most interesting and sought-after compounds for green light emission. This review focuses on recent progress in the design and synthesis protocols of colloidal FAPbBr3 NCs and the emerging concepts in tailoring their surface chemistry. The structural and physicochemical features of lead halide perovskites along with a comprehensive discussion on their defect-tolerant properties are briefly outlined. Later, the prevalent synthesis, ligand, and compositional engineering strategies to boost the stability and photoluminescence quantum yield (PLQY) of FAPbBr3 NCs are extensively discussed. Finally, the fundamental concepts and recent progress on FAPbBr3-based LEDs, followed by a discussion of the challenges and prospects that are on the table for this enticing class of perovskites, are reviewed.

13.
Sci Adv ; 7(52): eabj9066, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34936431

RESUMEN

Highly mobile hot charge carriers are a prerequisite for efficient hot carrier optoelectronics requiring long-range hot carrier transport. However, hot carriers are typically much less mobile than cold ones because of carrier-phonon scattering. Here, we report enhanced hot carrier mobility in Cs2AgBiBr6 double perovskite. Following photoexcitation, hot carriers generated with excess energy exhibit boosted mobility, reaching an up to fourfold enhancement compared to cold carriers and a long-range hot carrier transport length beyond 200 nm. By optical pump­infrared push-terahertz probe spectroscopy and frequency-resolved photoconductivity measurements, we provide evidence that the conductivity enhancement originates primarily from hot holes with reduced momentum scattering. We rationalize our observation by considering (quasi-)ballistic transport of thermalized hot holes with energies above an energetic threshold in Cs2AgBiBr6. Our findings render Cs2AgBiBr6 as a fascinating platform for studying the fundamentals of hot carrier transport and its exploitation toward hot carrier­based optoelectronic devices.

14.
ACS Appl Electron Mater ; 3(7): 3023-3033, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34337416

RESUMEN

Following the rapid increase of organic metal halide perovskites toward commercial application in thin-film solar cells, inorganic alternatives attracted great interest with their potential of longer device lifetime due to the stability improvement under increased temperatures and moisture ingress. Among them, cesium lead iodide (CsPbI3) has gained significant attention due to similar electronic and optical properties to methylammonium lead iodide (MAPbI3), with a band gap of 1.7 eV, high absorption coefficient, and large diffusion length, while also offering the advantage of being completely inorganic, providing a higher thermal stability and preventing material degradation. On a device level, however, it seems also essential to replace organic transport layers by inorganic counterparts to further prevent degradation. In addition, devices are mostly fabricated by spin coating, limiting their reproducibility and scalability; in this case, exploring all-evaporated devices allows us to improve the quality of the layers and to increase their reproducibility. In this work, we focus on the deposition of CsPbI3 by CsI and PbI2 co-evaporation. We fabricate devices with an all-inorganic, all-evaporated structure, employing NiO and TiO2 as transport layers, and evaluate these devices for both photodetector and solar cell applications. As a photodetector, low leakage current, high external quantum efficiency (EQE) and detectivity, and fast rise and decay times were obtained, while as a solar cell, acceptable efficiencies were achieved. These all-inorganic, all-evaporated devices represent one step forward toward higher stability and reproducibility while enabling large area compatibility and easier integration with other circuitry and, in future, the possible commercialization of perovskite-based technology.

15.
ACS Nano ; 15(7): 10775-10981, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34137264

RESUMEN

Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.

16.
ACS Omega ; 5(38): 24495-24503, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33015466

RESUMEN

CsPbBr3 perovskite-based composites so far have been synthesized by postdeposition of CsPbBr3 on a parent material. However, in situ construction offers enhanced surface contact, better activity, and improved stability. Instead of applying a typical thermal condensation at highly elevated temperatures, we report for the first time CsPb(Br x Cl1-x )3/graphitic-C3N4 (CsPbX3/g-C3N4) composites synthesized by a simple and mild solvothermal route, with enhanced efficacy in visible-light-driven photocatalytic CO2 reduction. The composite exhibited a CO production rate of 28.5 µmol g-1 h-1 at an optimized loading amount of g-C3N4. This rate is about five times those of pure g-C3N4 and CsPbBr3. This work reports a new in situ approach for constructing perovskite-based heterostructure photocatalysts with enhanced light-harvesting ability and improved solar energy conversion efficiency.

17.
ACS Omega ; 5(37): 23931-23939, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32984713

RESUMEN

Mapping the spatial and temporal heterogeneities in miscible polymer blends is critical for understanding and further improving their material properties. However, a complete picture on the heterogeneous dynamics is often obscured in ensemble measurements. Herein, the spatial and temporal heterogeneities in fully miscible polystyrene/oligostyrene blend films are investigated by monitoring the rotational diffusion of embedded individual probe molecules using defocused wide-field fluorescence microscopy. In the same blend film, three significantly different types of dynamical behaviors (referred to as modes) of the probe molecules can be observed at the same time, namely, immobile, continuously rotating, and intermittently rotating probe molecules. This reveals a prominent spatial heterogeneity in local dynamics at the nanometer scale. In addition to that, temporal heterogeneity is uncovered by the nonexponential characteristic of the rotational autocorrelation functions of single-molecule probes. Moreover, the occurrence probabilities of these different modes strongly depend on the polystyrene: oligostyrene ratios in the blend films. Remarkably, some probe molecules switch between the continuous and intermittent rotational modes at elevated temperature, indicating a possible alteration in local dynamics that is triggered by the dynamic heterogeneity in the blends. Although some of these findings can be discussed by the self-concentration model and the results provided by ensemble averaging techniques (e.g., dielectric spectroscopy), there are implications that go beyond current models of blend dynamics.

18.
Adv Mater ; 32(40): e2001878, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32864757

RESUMEN

Lead-free double perovskites have great potential as stable and nontoxic optoelectronic materials. Recently, Cs2 AgBiBr6 has emerged as a promising material, with suboptimal photon-to-charge carrier conversion efficiency, yet well suited for high-energy photon-detection applications. Here, the optoelectronic and structural properties of pure Cs2 AgBiBr6 and alkali-metal-substituted (Cs1- x Yx )2 AgBiBr6 (Y: Rb+ , K+ , Na+ ; x = 0.02) single crystals are investigated. Strikingly, alkali-substitution entails a tunability to the material system in its response to X-rays and structural properties that is most strongly revealed in Rb-substituted compounds whose X-ray sensitivity outperforms other double-perovskite-based devices reported. While the fundamental nature and magnitude of the bandgap remains unchanged, the alkali-substituted materials exhibit a threefold boost in their fundamental carrier recombination lifetime at room temperature. Moreover, an enhanced electron-acoustic phonon scattering is found compared to Cs2 AgBiBr6 . The study thus paves the way for employing cation substitution to tune the properties of double perovskites toward a new material platform for optoelectronics.

19.
Nanophotonics ; 10(8): 2145-2156, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36406045

RESUMEN

Lead halide perovskites have attracted tremendous attention in photovoltaics due to their impressive optoelectronic properties. However, the poor stability of perovskite-based devices remains a bottleneck for further commercial development. Two-dimensional perovskites have great potential in optoelectronic devices, as they are much more stable than their three-dimensional counterparts and rapidly catching up in performance. Herein, we demonstrate high-quality two-dimensional novel perovskite thin films with alternating cations in the interlayer space. This innovative perovskite provides highly stable semiconductor thin films for efficient near-infrared light-emitting diodes (LEDs). Highly efficient LEDs with tunable emission wavelengths from 680 to 770 nm along with excellent operational stability are demonstrated by varying the thickness of the interlayer spacer cation. Furthermore, the best-performing device exhibits an external quantum efficiency of 3.4% at a high current density (J) of 249 mA/cm2 and remains above 2.5% for a J up to 720 mA cm-2, leading to a high radiance of 77.5 W/Sr m2 when driven at 6 V. The same device also shows impressive operational stability, retaining almost 80% of its initial performance after operating at 20 mA/cm2 for 350 min. This work provides fundamental evidence that this novel alternating interlayer cation 2D perovskite can be a promising and stable photonic emitter.

20.
Science ; 365(6454): 679-684, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31346140

RESUMEN

The high-temperature, all-inorganic CsPbI3 perovskite black phase is metastable relative to its yellow, nonperovskite phase at room temperature. Because only the black phase is optically active, this represents an impediment for the use of CsPbI3 in optoelectronic devices. We report the use of substrate clamping and biaxial strain to render black-phase CsPbI3 thin films stable at room temperature. We used synchrotron-based, grazing incidence, wide-angle x-ray scattering to track the introduction of crystal distortions and strain-driven texture formation within black CsPbI3 thin films when they were cooled after annealing at 330°C. The thermal stability of black CsPbI3 thin films is vastly improved by the strained interface, a response verified by ab initio thermodynamic modeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...