Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Natl Sci Rev ; 11(5): nwae124, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778818

RESUMEN

The human brain is a complex system, whose activity exhibits flexible and continuous reorganization across space and time. The decomposition of whole-brain recordings into harmonic modes has revealed a repertoire of gradient-like activity patterns associated with distinct brain functions. However, the way these activity patterns are expressed over time with their changes in various brain states remains unclear. Here, we investigate healthy participants taking the serotonergic psychedelic N,N-dimethyltryptamine (DMT) with the Harmonic Decomposition of Spacetime (HADES) framework that can characterize how different harmonic modes defined in space are expressed over time. HADES demonstrates significant decreases in contributions across most low-frequency harmonic modes in the DMT-induced brain state. When normalizing the contributions by condition (DMT and non-DMT), we detect a decrease specifically in the second functional harmonic, which represents the uni- to transmodal functional hierarchy of the brain, supporting the leading hypothesis that functional hierarchy is changed in psychedelics. Moreover, HADES' dynamic spacetime measures of fractional occupancy, life time and latent space provide a precise description of the significant changes of the spacetime hierarchical organization of brain activity in the psychedelic state.

2.
PLoS Comput Biol ; 20(5): e1011350, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701063

RESUMEN

A fundamental challenge in neuroscience is accurately defining brain states and predicting how and where to perturb the brain to force a transition. Here, we investigated resting-state fMRI data of patients suffering from disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakefulness states) and healthy controls. We applied model-free and model-based approaches to help elucidate the underlying brain mechanisms of patients with DoC. The model-free approach allowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable substate (PMS) space. The PMS of each group was defined by a repertoire of unique patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This allowed us to explore optimal strategies for promoting transitions by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate the impact of local perturbations in terms of their global effects and sensitivity to stimulation, which is a model-based biomarker providing a deeper understanding of the mechanisms underlying DoC. Our results show that transitions were obtained in a synchronous protocol, in which the somatomotor network, thalamus, precuneus and insula were the most sensitive areas to perturbation. This motivates further work to continue understanding brain function and treatments of disorders of consciousness.


Asunto(s)
Encéfalo , Simulación por Computador , Trastornos de la Conciencia , Imagen por Resonancia Magnética , Modelos Neurológicos , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Trastornos de la Conciencia/fisiopatología , Trastornos de la Conciencia/diagnóstico por imagen , Masculino , Femenino , Biología Computacional , Adulto , Persona de Mediana Edad , Estado de Conciencia/fisiología , Mapeo Encefálico/métodos , Anciano
3.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814872

RESUMEN

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Asunto(s)
Corteza Cerebral , Cognición , Imagen por Resonancia Magnética , Humanos , Cognición/fisiología , Cognición/efectos de los fármacos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Masculino , Imagen por Resonancia Magnética/métodos , Femenino , Adolescente , Niño , Conectoma/métodos , Alprazolam/farmacología , Receptores de GABA-A/metabolismo , Adulto Joven
4.
Netw Neurosci ; 8(1): 158-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562284

RESUMEN

It has been previously shown that traumatic brain injury (TBI) is associated with reductions in metastability in large-scale networks in resting-state fMRI (rsfMRI). However, little is known about how TBI affects the local level of synchronization and how this evolves during the recovery trajectory. Here, we applied a novel turbulent dynamics framework to investigate whole-brain dynamics using an rsfMRI dataset from a cohort of moderate to severe TBI patients and healthy controls (HCs). We first examined how several measures related to turbulent dynamics differ between HCs and TBI patients at 3, 6, and 12 months post-injury. We found a significant reduction in these empirical measures after TBI, with the largest change at 6 months post-injury. Next, we built a Hopf whole-brain model with coupled oscillators and conducted in silico perturbations to investigate the mechanistic principles underlying the reduced turbulent dynamics found in the empirical data. A simulated attack was used to account for the effect of focal lesions. This revealed a shift to lower coupling parameters in the TBI dataset and, critically, decreased susceptibility and information-encoding capability. These findings confirm the potential of the turbulent framework to characterize longitudinal changes in whole-brain dynamics and in the reactivity to external perturbations after TBI.

5.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38585882

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) affects brain structure and function along its evolution, but brain network dynamic changes remain largely unknown. METHODS: To understand how AD shapes brain activity, we investigated the spatiotemporal dynamics and resting state functional networks using the intrinsic ignition framework, which characterizes how an area transmits neuronal activity to others, resulting in different degrees of integration. Healthy participants, MCI, and AD patients were scanned using resting state fMRI. Mixed effects models were used to assess the impact of ABeta and tau, at the regional and whole-brain levels. RESULTS: Dynamic complexity is progressively reduced, with Healthy participants showing higher metastability (i.e., a more complex dynamical regime over time) than observed in the other stages, while AD subjects showed the lowest. DISCUSSION: Our study provides further insight into how AD modulates brain network dynamics along its evolution, progressively disrupting the whole-brain and resting state network dynamics.

6.
bioRxiv ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38586012

RESUMEN

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here we non-invasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically-plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the GABA-agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 years old) and Asian (7.2 to 7.9 years old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.

7.
Neuron ; 112(9): 1392-1396, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608705

RESUMEN

"Supporting human flourishing" is a goal of governments and societies, yet the construct may appear hard to define. We discuss the emerging science of pleasure and flourishing, insights into the brain mechanisms of meaning making and thriving, and the potential for interdisciplinary studies to advance this promising scientific field.


Asunto(s)
Encéfalo , Placer , Humanos , Placer/fisiología , Encéfalo/fisiología
8.
Trends Cogn Sci ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38677884

RESUMEN

To not only survive, but also thrive, the brain must efficiently orchestrate distributed computation across space and time. This requires hierarchical organisation facilitating fast information transfer and processing at the lowest possible metabolic cost. Quantifying brain hierarchy is difficult but can be estimated from the asymmetry of information flow. Thermodynamics has successfully characterised hierarchy in many other complex systems. Here, we propose the 'Thermodynamics of Mind' framework as a natural way to quantify hierarchical brain orchestration and its underlying mechanisms. This has already provided novel insights into the orchestration of hierarchy in brain states including movie watching, where the hierarchy of the brain is flatter than during rest. Overall, this framework holds great promise for revealing the orchestration of cognition.

9.
Alzheimers Res Ther ; 16(1): 79, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605416

RESUMEN

BACKGROUND: The hypothesis of decreased neural inhibition in dementia has been sparsely studied in functional magnetic resonance imaging (fMRI) data across patients with different dementia subtypes, and the role of social and demographic heterogeneities on this hypothesis remains to be addressed. METHODS: We inferred regional inhibition by fitting a biophysical whole-brain model (dynamic mean field model with realistic inter-areal connectivity) to fMRI data from 414 participants, including patients with Alzheimer's disease, behavioral variant frontotemporal dementia, and controls. We then investigated the effect of disease condition, and demographic and clinical variables on the local inhibitory feedback, a variable related to the maintenance of balanced neural excitation/inhibition. RESULTS: Decreased local inhibitory feedback was inferred from the biophysical modeling results in dementia patients, specific to brain areas presenting neurodegeneration. This loss of local inhibition correlated positively with years with disease, and showed differences regarding the gender and geographical origin of the patients. The model correctly reproduced known disease-related changes in functional connectivity. CONCLUSIONS: Results suggest a critical link between abnormal neural and circuit-level excitability levels, the loss of grey matter observed in dementia, and the reorganization of functional connectivity, while highlighting the sensitivity of the underlying biophysical mechanism to demographic and clinical heterogeneities in the patient population.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Humanos , Encéfalo/patología , Imagen por Resonancia Magnética , Sustancia Gris/patología , Demencia Frontotemporal/patología , Enfermedad de Alzheimer/patología , Inhibición Neural
10.
Front Neuroinform ; 18: 1382372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590709

RESUMEN

Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. In this Mini Review, we first provide a description of our model-free and model-based approaches within the turbulent dynamics framework as well as our vision on how they can potentially contribute to provide new neuroimaging biomarkers for TBI. In addition, we report the main findings of our recent study examining longitudinal changes in moderate-severe TBI (msTBI) patients during a one year spontaneous recovery by applying the turbulent dynamics framework (model-free approach) and the Hopf whole-brain computational model (model-based approach) combined with in silico perturbations. Given the neuroinflammatory response and heightened risk for neurodegeneration after TBI, we also offer future directions to explore the association with genomic information. Moreover, we discuss how whole-brain computational modeling may advance our understanding of the impact of structural disconnection on whole-brain dynamics after msTBI in light of our recent findings. Lastly, we suggest future avenues whereby whole-brain computational modeling may assist the identification of optimal brain targets for deep brain stimulation to promote TBI recovery.

11.
Adv Sci (Weinh) ; : e2308364, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489748

RESUMEN

Adolescence is a timed process with an onset, tempo, and duration. Nevertheless, the temporal dimension, especially the pace of maturation, remains an insufficiently studied aspect of developmental progression. The primary objective is to estimate the precise influence of pubertal maturational tempo on the configuration of associative brain regions. To this end, the connection between maturational stages and the level of hierarchical organization of large-scale brain networks in 12-13-year-old females is analyzed. Skeletal maturity is used as a proxy for pubertal progress. The degree of maturity is defined by the difference between bone age and chronological age. To assess the level of hierarchical organization in the brain, the temporal dynamic of closed eye resting state high-density electroencephalography (EEG) in the alpha frequency range is analyzed. Different levels of hierarchical order are captured by the measured asymmetry in the directionality of information flow between different regions. The calculated EEG-based entropy production of participant groups is then compared with accelerated, average, and decelerated maturity. Results indicate that an average maturational trajectory optimally aligns with cerebral hierarchical order, and both accelerated and decelerated timelines result in diminished cortical organization. This suggests that a "Goldilocks rule" of brain development is favoring a particular maturational tempo.

12.
Brain Commun ; 6(2): fcae049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515439

RESUMEN

Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for depression-to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depressive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions correlate with in vivo density maps of serotonin receptors 5-hydroxytryptamine 2a and 5-hydroxytryptamine 1a, which psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission has long been associated with depression, and our findings provide causal mechanistic evidence for the role of brain regions in the recovery from depression via psilocybin.

13.
Nat Commun ; 15(1): 16, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331941

RESUMEN

Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.


Asunto(s)
Trastorno Autístico , Recien Nacido Prematuro , Preescolar , Lactante , Adulto , Humanos , Recién Nacido , Encéfalo/patología , Mapeo Encefálico , Imagen por Resonancia Magnética
14.
Trends Cogn Sci ; 28(4): 319-338, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38246816

RESUMEN

Despite significant improvements in our understanding of brain diseases, many barriers remain. Cognitive neuroscience faces four major challenges: complex structure-function associations; disease phenotype heterogeneity; the lack of transdiagnostic models; and oversimplified cognitive approaches restricted to the laboratory. Here, we propose a synergetics framework that can help to perform the necessary dimensionality reduction of complex interactions between the brain, body, and environment. The key solutions include low-dimensional spatiotemporal hierarchies for brain-structure associations, whole-brain modeling to handle phenotype diversity, model integration of shared transdiagnostic pathophysiological pathways, and naturalistic frameworks balancing experimental control and ecological validity. Creating whole-brain models with reduced manifolds combined with ecological measures can improve our understanding of brain disease and help identify novel interventions. Synergetics provides an integrated framework for future progress in clinical and cognitive neuroscience, pushing the boundaries of brain health and disease toward more mature, naturalistic approaches.


Asunto(s)
Encefalopatías , Neurociencia Cognitiva , Humanos , Encéfalo/fisiología
15.
Sci Rep ; 14(1): 2615, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297071

RESUMEN

Whole-brain models have proven to be useful to understand the emergence of collective activity among neural populations or brain regions. These models combine connectivity matrices, or connectomes, with local node dynamics, noise, and, eventually, transmission delays. Multiple choices for the local dynamics have been proposed. Among them, nonlinear oscillators corresponding to a supercritical Hopf bifurcation have been used to link brain connectivity and collective phase and amplitude dynamics in different brain states. Here, we studied the linear fluctuations of this model to estimate its stationary statistics, i.e., the instantaneous and lagged covariances and the power spectral densities. This linear approximation-that holds in the case of heterogeneous parameters and time-delays-allows analytical estimation of the statistics and it can be used for fast parameter explorations to study changes in brain state, changes in brain activity due to alterations in structural connectivity, and modulations of parameter due to non-equilibrium dynamics.


Asunto(s)
Encéfalo , Fenómenos Fisiológicos del Sistema Nervioso
16.
PLoS Comput Biol ; 20(1): e1011818, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241383

RESUMEN

Brain signal irreversibility has been shown to be a promising approach to study neural dynamics. Nevertheless, the relation with cortical hierarchy and the influence of different electrophysiological features is not completely understood. In this study, we recorded local field potentials (LFPs) during spontaneous behavior, including awake and sleep periods, using custom micro-electrocorticographic (µECoG) arrays implanted in ferrets. In contrast to humans, ferrets remain less time in each state across the sleep-wake cycle. We deployed a diverse set of metrics in order to measure the levels of complexity of the different behavioral states. In particular, brain irreversibility, which is a signature of non-equilibrium dynamics, captured by the arrow of time of the signal, revealed the hierarchical organization of the ferret's cortex. We found different signatures of irreversibility and functional hierarchy of large-scale dynamics in three different brain states (active awake, quiet awake, and deep sleep), showing a lower level of irreversibility in the deep sleep stage, compared to the other. Irreversibility also allowed us to disentangle the influence of different cortical areas and frequency bands in this process, showing a predominance of the parietal cortex and the theta band. Furthermore, when inspecting the embedded dynamic through a Hidden Markov Model, the deep sleep stage was revealed to have a lower switching rate and lower entropy production. These results suggest functional hierarchies in organization that can be revealed through thermodynamic features and information theory metrics.


Asunto(s)
Encéfalo , Hurones , Animales , Humanos , Encéfalo/fisiología , Sueño/fisiología , Mapeo Encefálico/métodos , Vigilia/fisiología
17.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37991264

RESUMEN

The frontal pole is implicated in humans in whether to exploit resources versus explore alternatives. Effective connectivity, functional connectivity, and tractography were measured between six human frontal pole regions and for comparison 13 dorsolateral and dorsal prefrontal cortex regions, and the 360 cortical regions in the Human Connectome Project Multi-modal-parcellation atlas in 171 HCP participants. The frontal pole regions have effective connectivity with Dorsolateral Prefrontal Cortex regions, the Dorsal Prefrontal Cortex, both implicated in working memory; and with the orbitofrontal and anterior cingulate cortex reward/non-reward system. There is also connectivity with temporal lobe, inferior parietal, and posterior cingulate regions. Given this new connectivity evidence, and evidence from activations and damage, it is proposed that the frontal pole cortex contains autoassociation attractor networks that are normally stable in a short-term memory state, and maintain stability in the other prefrontal networks during stable exploitation of goals and strategies. However, if an input from the orbitofrontal or anterior cingulate cortex that expected reward, non-reward, or punishment is received, this destabilizes the frontal pole and thereby other prefrontal networks to enable exploration of competing alternative goals and strategies. The frontal pole connectivity with reward systems may be key in exploit versus explore.


Asunto(s)
Conectoma , Lóbulo Parietal , Humanos , Imagen por Resonancia Magnética , Lóbulo Frontal/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Lóbulo Temporal
18.
Alzheimers Res Ther ; 15(1): 210, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053164

RESUMEN

BACKGROUND: Alzheimer's disease is a neurodegenerative condition associated with the accumulation of two misfolded proteins, amyloid-beta (A[Formula: see text]) and tau. We study their effect on neuronal activity, with the aim of assessing their individual and combined impact. METHODS: We use a whole-brain dynamic model to find the optimal parameters that best describe the effects of A[Formula: see text] and tau on the excitation-inhibition balance of the local nodes. RESULTS: We found a clear dominance of A[Formula: see text] over tau in the early disease stages (MCI), while tau dominates over A[Formula: see text] in the latest stages (AD). We identify crucial roles for A[Formula: see text] and tau in complex neuronal dynamics and demonstrate the viability of using regional distributions to define models of large-scale brain function in AD. CONCLUSIONS: Our study provides further insight into the dynamics and complex interplay between these two proteins, opening the path for further investigations on biomarkers and candidate therapeutic targets in-silico.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Biomarcadores/metabolismo
19.
Hum Brain Mapp ; 44(18): 6349-6363, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37846551

RESUMEN

Adapting to a constantly changing environment requires the human brain to flexibly switch among many demanding cognitive tasks, processing both specialized and integrated information associated with the activity in functional networks over time. In this study, we investigated the nature of the temporal alternation between segregated and integrated states in the brain during rest and six cognitive tasks using functional MRI. We employed a deep autoencoder to explore the 2D latent space associated with the segregated and integrated states. Our results show that the integrated state occupies less space in the latent space manifold compared to the segregated states. Moreover, the integrated state is characterized by lower entropy of occupancy than the segregated state, suggesting that integration plays a consolidating role, while segregation may serve as cognitive expertness. Comparing rest and the tasks, we found that rest exhibits higher entropy of occupancy, indicating a more random wandering of the mind compared to the expected focus during task performance. Our study demonstrates that both transient, short-lived integrated and segregated states are present during rest and task performance, flexibly switching between them, with integration serving as information compression and segregation related to information specialization.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Mapeo Encefálico/métodos , Vías Nerviosas , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Descanso , Cognición
20.
Netw Neurosci ; 7(3): 966-998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781151

RESUMEN

A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distance of DMN regions is maximally removed from sensorimotor regions containing environment-driven neural activity directly linked to perception and action, which would allow the DMN to orchestrate complex cognition from the top of the hierarchy. However, discovering the functional hierarchy of brain dynamics requires finding the best way to measure interactions between brain regions. In contrast to previous methods measuring the hierarchical flow of information using, for example, transfer entropy, here we used a thermodynamics-inspired, deep learning based Temporal Evolution NETwork (TENET) framework to assess the asymmetry in the flow of events, 'arrow of time', in human brain signals. This provides an alternative way of quantifying hierarchy, given that the arrow of time measures the directionality of information flow that leads to a breaking of the balance of the underlying hierarchy. In turn, the arrow of time is a measure of nonreversibility and thus nonequilibrium in brain dynamics. When applied to large-scale Human Connectome Project (HCP) neuroimaging data from close to a thousand participants, the TENET framework suggests that the DMN plays a significant role in orchestrating the hierarchy, that is, levels of nonreversibility, which changes between the resting state and when performing seven different cognitive tasks. Furthermore, this quantification of the hierarchy of the resting state is significantly different in health compared to neuropsychiatric disorders. Overall, the present thermodynamics-based machine-learning framework provides vital new insights into the fundamental tenets of brain dynamics for orchestrating the interactions between cognition and brain in complex environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...