Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 20(200): 20220906, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36946086

RESUMEN

Transport in complex networks can describe a variety of natural and human-engineered processes including biological, societal and technological ones. However, how the properties of the source and drain nodes can affect transport subject to random failures, attacks or maintenance optimization in the network remain unknown. In this article, the effects of both the distance between the source and drain nodes and the degree of the source node on the time of transport collapse are studied in scale-free and lattice-based transport networks. These effects are numerically evaluated for two strategies, which employ either transport-based or random link removal. Scale-free networks with small distances are found to result in larger times of collapse. In lattice-based networks, both the dimension and boundary conditions are shown to have a major effect on the time of collapse. We also show that adding a direct link between the source and the drain increases the robustness of scale-free networks when subject to random link removals. Interestingly, the distribution of the times of collapse is then similar to the one of lattice-based networks.

2.
Biostatistics ; 20(1): 48-64, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29149240

RESUMEN

The clinical and biological follow-up of individuals, such as the biological passport for athletes, is typically based on the individual and longitudinal monitoring of hematological or urine markers. These follow-ups aim to identify abnormal behavior by comparing the individual's biological samples to an established baseline. These comparisons may be done via different ways, but each of them requires an appropriate extra population to compute the significance levels, which is a non-trivial issue. Moreover, it is not necessarily relevant to compare the measures of a biomarker of a professional athlete to that of a reference population (even restricted to other athletes), and a reasonable alternative is to detect the abnormal values by considering only the other measurements of the same athlete. Here we propose a simple adaptive statistic based on maxima of Z-scores that does not rely on the use of an extra population. We show that, in the Gaussian framework, it is a practical and relevant method for detecting abnormal values in a series of observations from the same individual. The distribution of this statistic does not depend on the individual parameters under the null hypothesis, and its quantiles can be computed using Monte Carlo simulations. The proposed method is tested on the 3-year follow-up of ferritin, serum iron, erythrocytes, hemoglobin, and hematocrit markers in 2577 elite male soccer players. For instance, if we consider the abnormal values for the hematocrit at a 5% level, we found that 5.57% of the selected cohort had at least one abnormal value (which is not significantly different from the expected false-discovery rate). The approach is a starting point for more elaborate models that would produce a refined individual baseline. The method can be extended to the Gaussian linear model, in order to include additional variables such as the age or exposure to altitude. The method could also be applied to other domains, such as the clinical patient follow-up in monitoring abnormal values of biological markers.


Asunto(s)
Bioestadística/métodos , Pruebas Hematológicas/estadística & datos numéricos , Modelos Estadísticos , Monitoreo Fisiológico , Adulto , Atletas , Ferritinas/sangre , Humanos , Hierro/sangre , Masculino , Distribución Normal , Valores de Referencia , Fútbol
3.
Artículo en Inglés | MEDLINE | ID: mdl-33344967

RESUMEN

Objectives: The aim of this study was to quantify collective experience based on cumulative shared selections of players and to assess its impact on team performance in international rugby union. We assume that the greater the experience, the better the group will perform. Methods: Scoresheets of all games involving at least one of all 10 nations participating at the Rugby Championship and the Six Nations Championship were collected from the end of the 1999 Rugby World Cup (RWC) up to the 2015 RWC. A single indicator quantifying the cumulative shared selections (CSS, the number of selections that each player has shared with the other ones) was computed for each match as a key collective experience indicator. The World Rugby Ranking points of each nation and the percentage of victories were used to estimate team performance. The study period was divided into sequences of 4 years corresponding to the period between two consecutive RWCs. For each sequence and nation, slopes and intercept of CSS trends were computed along with victory percentage and mean ranking points. Multiple linear regression analysis was used to establish the associations between team performance and experience. Results: In regards to the CSS trends, both intra- and inter-nation variability appears to exist. Positive and negative slopes can be observed for the same team from one 4-year cycle to the next. Still, CSS slope is found to be significantly associated with both ranking points (p value = 0.042, R 2 = 0.13) and victory percentage (p value = 0.001, R 2 = 0.42). Conclusion: The evolution of the CSS that quantifies the collective experience of a team is linked to its performance. Such an indicator could be helpful in the decision-making process of national coaching staff.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...