Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Clin Nutr ; 113(4): 781-789, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33515034

RESUMEN

BACKGROUND: Maintenance of high physical performance during aging might be supported by an adequate dietary intake of niacin, vitamins B-6 and B-12, and folate because these B vitamins are involved in multiple processes related to muscle functioning. However, not much is known about the association between dietary intake of these B vitamins and physical performance. OBJECTIVES: The objectives of this study were to investigate the association between dietary intake of niacin, vitamins B-6 and B-12, and folate and physical performance in older adults and to explore mediation by niacin status and homocysteine concentrations. METHODS: We used baseline data from the New Dietary Strategies Addressing the Specific Needs of the Elderly Population for Healthy Aging in Europe (NU-AGE) trial, which included n = 1249 healthy older adults (aged 65-79 y) with complete data on dietary intake measured with 7-d food records and questionnaires on vitamin supplement use and physical performance measured with the short physical performance battery and handgrip dynamometry. Associations were assessed by adjusted linear mixed models. RESULTS: Intake of vitamin B-6 was related to lower chair rise test time [ß: -0.033 ± 0.016 s (log); P = 0.043]. Vitamin B-6 intake was also significantly associated with handgrip strength, but for this association, a significant interaction effect between vitamin B-6 intake and physical activity level was found. In participants with the lowest level of physical activity, higher intake of vitamin B-6 tended to be associated with greater handgrip strength (ß: 1.5 ± 0.8 kg; P = 0.051), whereas in participants in the highest quartile of physical activity, higher intake was associated with lower handgrip strength (ß: -1.4 ± 0.7 kg; P = 0.041). No evidence was found for an association between intake of niacin, vitamin B-12, or folate and physical performance or for mediation by niacin status or homocysteine concentrations. CONCLUSIONS: Vitamin B-6 intake was associated with better chair rise test time in a population of European healthy older adults and also with greater handgrip strength in participants with low physical activity only. Homocysteine concentrations did not mediate these associations. The NU-AGE trial was registered at clinicaltrials.gov as NCT01754012.


Asunto(s)
Envejecimiento/fisiología , Dieta/normas , Rendimiento Físico Funcional , Vitamina B 6/administración & dosificación , Anciano , Suplementos Dietéticos , Europa (Continente) , Ejercicio Físico , Femenino , Fuerza de la Mano , Envejecimiento Saludable , Homocisteína/sangre , Humanos , Masculino , Estado Nutricional
2.
Nutrients ; 12(7)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664445

RESUMEN

It is unclear whether niacin nutritional status is a target for improvement of long-term outcome after renal transplantation. The 24-h urinary excretion of N1-methylnicotinamide (N1-MN), as a biomarker of niacin status, has previously been shown to be negatively associated with premature mortality in kidney transplant recipients (KTR). However, recent evidence implies higher enzymatic conversion of N1-MN to N1-methyl-2-pyridone-5-carboxamide (2Py) in KTR, therefore the need exists for interpretation of both N1-MN and 2Py excretion for niacin status assessment. We assessed niacin status by means of the 24-h urinary excretion of the sum of N1-MN and 2Py (N1-MN + 2Py), and its associations with risk of premature mortality in KTR. N1-MN + 2Py excretion was measured in a longitudinal cohort of 660 KTR with LS-MS/MS. Prospective associations of N1-MN + 2Py excretion were investigated with Cox regression analyses. Median N1-MN + 2Py excretion was 198.3 (155.9-269.4) µmol/day. During follow-up of 5.4 (4.7-6.1) years, 143 KTR died, of whom 40 due to an infectious disease. N1-MN + 2Py excretion was negatively associated with risk of all-cause mortality (HR 0.61; 95% CI 0.47-0.79; p < 0.001), and infectious mortality specifically (HR 0.47; 95% CI 0.29-0.75; p = 0.002), independent of potential confounders. Secondary analyses showed effect modification of hs-CRP on the negative prospective association of N1-MN + 2Py excretion, and sensitivity analyses showed negative and independent associations of N1-MN and 2Py excretion with risk of all-cause mortality separately. These findings add further evidence to niacin status as a target for nutritional strategies for improvement of long-term outcome in KTR.


Asunto(s)
Trasplante de Riñón/mortalidad , Niacina/orina , Niacinamida/análogos & derivados , Piridonas/orina , Adulto , Anciano , Biomarcadores/orina , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Niacina/metabolismo , Niacinamida/metabolismo , Niacinamida/orina , Estado Nutricional , Estudios Prospectivos , Piridonas/metabolismo , Factores de Riesgo , Espectrometría de Masas en Tándem , Triptófano/metabolismo
3.
J Clin Med ; 9(2)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041099

RESUMEN

N1-methylnicotinamide (N1-MN) and N1-methyl-2-pyridone-5-carboxamide (2Py) are successive end products of NAD+ catabolism. N1-MN excretion in 24-h urine is the established biomarker of niacin nutritional status, and recently shown to be reduced in renal transplant recipients (RTR). However, it is unclear whether 2Py excretion is increased in this population, and, if so, whether a shift in excretion of N1-MN to 2Py can be attributed to kidney function. Hence, we assessed the 24-h urinary excretion of 2Py and N1-MN in RTR and kidney donors before and after kidney donation, and investigated associations of the urinary ratio of 2Py to N1-MN (2Py/N1-MN) with kidney function, and independent determinants of urinary 2Py/N1-MN in RTR. The urinary excretion of 2Py and N1-MN was measured in a cross-sectional cohort of 660 RTR and 275 healthy kidney donors with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Linear regression analyses were used to investigate associations and determinants of urinary 2Py/N1-MN. Median 2Py excretion was 178.1 (130.3-242.8) µmol/day in RTR, compared to 155.6 (119.6-217.6) µmol/day in kidney donors (p < 0.001). In kidney donors, urinary 2Py/N1-MN increased significantly after kidney donation (4.0 ± 1.4 to 5.2 ± 1.5, respectively; p < 0.001). Smoking, alcohol consumption, diabetes, high-density lipoprotein (HDL), high-sensitivity C-reactive protein (hs-CRP) and estimated glomerular filtration rate (eGFR) were identified as independent determinants of urinary 2Py/N1-MN in RTR. In conclusion, the 24-h urinary excretion of 2Py is higher in RTR than in kidney donors, and urinary 2Py/N1-MN increases after kidney donation. As our data furthermore reveal strong associations of urinary 2Py/N1-MN with kidney function, interpretation of both N1-MN and 2Py excretion may be recommended for assessment of niacin nutritional status in conditions of impaired kidney function.

4.
J Clin Med ; 8(11)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726722

RESUMEN

Renal transplant recipients (RTR) commonly suffer from vitamin B6 deficiency and its functional consequences add to an association with poor long-term outcome. It is unknown whether niacin status is affected in RTR and, if so, whether this affects clinical outcomes, as vitamin B6 is a cofactor in nicotinamide biosynthesis. We compared 24-h urinary excretion of N1-methylnicotinamide (N1-MN) as a biomarker of niacin status in RTR with that in healthy controls, in relation to dietary intake of tryptophan and niacin as well as vitamin B6 status, and investigated whether niacin status is associated with the risk of premature all-cause mortality in RTR. In a prospective cohort of 660 stable RTR with a median follow-up of 5.4 (4.7-6.1) years and 275 healthy kidney donors, 24-h urinary excretion of N1-MN was measured with liquid chromatography-tandem mass spectrometry LC-MS/MS. Dietary intake was assessed by food frequency questionnaires. Prospective associations of N1-MN excretion with mortality were investigated by Cox regression analyses. Median N1-MN excretion was 22.0 (15.8-31.8) µmol/day in RTR, compared to 41.1 (31.6-57.2) µmol/day in healthy kidney donors (p < 0.001). This difference was independent of dietary intake of tryptophan (1059 ± 271 and 1089 ± 308 mg/day; p = 0.19), niacin (17.9 ± 5.2 and 19.2 ± 6.2 mg/day; p < 0.001), plasma vitamin B6 (29.0 (17.5-49.5), and 42.0 (29.8-60.3) nmol/L; p < 0.001), respectively. N1-MN excretion was inversely associated with the risk of all-cause mortality in RTR (HR 0.57; 95% CI 0.45-0.71; p < 0.001), independent of potential confounders. RTR excrete less N1-MN in 24-h urine than healthy controls, and our data suggest that this difference cannot be attributed to lower dietary intake of tryptophan and niacin, nor vitamin B6 status. Importantly, lower 24-h urinary excretion of N1-MN is independently associated with a higher risk of premature all-cause mortality in RTR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...